Skip to main content
Log in

Complete Mitochondrial Genomes and Eutherian Evolution

  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

Recent large-scale nuclear DNA phylogenies have supported unconventional interordinal relationships among modern eutherians as well as divergence dates (100 mya) that substantially predate the first appearance of fossils from modern eutherians near the Cretaceous/Cenozoic (K/T) boundary (65-70 mya). For comparison to the nuclear data, I analyzed 12 complete mitochondrial DNA (mtDNA) protein-coding genes (10,677 bp) from 53 eutherian taxa, using maximum-likelihood methods to estimate model parameters (GTR + I + Γ) and to optimize topology and branch-length estimates. Although closely resembling the nuclear DNA trees, the mtDNA maximum-likelihood tree is just one of seven statistically indistinguishable (Δ lnL ≤ 1.747) trees, each suggesting different evolutionary relationships. This 53-taxon data set and another including 56 taxa provide no statistically significant support for a monophyletic afrotherian clade. In fact, these mitochondrial DNA sequences fail to support the monophyly of three putative eutherian divisions suggested by the nuclear data (Afrotheria, Laurasiatheria or Euarchontoglires). By comparison to well-supported branches describing relationships among families, those describing interordinal relationships are extremely short and only tenuously supported. Neither these sequences, nor sequences simulated under a known tree, fully resolve any interordinal relationship. Even simulated sequences that are twice as long (22kb) as mtDNA protein-coding genes are too short and too saturated to resolve the deepest and shortest interordinal relationships. Further, the mammalian mtDNA sequences appear to depart significantly from molecular-clock and quartet dating assumptions. Unlike recent nuclear DNA studies, I find that mtDNA genes, by themselves, are inadequate to describe relationships or divergence times at the base of the eutherian tree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

LITERATURE CITED

  • Adkins, R. M., and Honeycutt, R. L. (1991). Molecular phylogeny of the superorder Archonta. Proc. Natl. Acad. Sci. USA 88: 10317–10321.

    Google Scholar 

  • Alroy, J. (1999). The fossil record of North American mammals: Evidence for a Paleocene evolutionary radiation. Syst. Biol. 48: 107–118.

    Google Scholar 

  • Anderson, S., deBruijn, M. H., Coulson, A. R., Eperon, I. C., Sanger, F., and Young, I. G. (1982). Complete sequence of bovine mitochondrial DNA. Conserved features of the mammalian mitochondrial genome. J. Mol. Evol. 156: 683–717.

    Google Scholar 

  • Arnason, U., and Gullberg, A. (1993). Comparison between the complete mtDNA sequence of the blue and fin whale, two species that can hybridize in nature. J. Mol. Evol. 37: 312–322.

    Google Scholar 

  • Arnason, U., Gullberg, A., Johnsson, E., and Ledje, C. (1993). The nucleotide sequence of the mitochondrial DNA molecule of the grey seal, Halichoerus grypus, and a comparison with mitochondrial of other true seals. J. Mol. Evol. 33: 323–330.

    Google Scholar 

  • Arnason, U., Gullberg, A., Janke, A., and Xiufeng, X. (1996a). Pattern and timing of evolutionary divergences among Hominoids based on analysis of complete mtDNAs. J. Mol. Evol. 43: 650–661.

    Google Scholar 

  • Arnason, U., Gullberg, A., and Xu, X. (1996b). Complete mitochondrial DNA molecule of the white-handed gibbon, Hylobates lar and a comparison among individual mitochondrial gene of all hominid genera. Hereditas 124.

  • Arnason, U., Xu, X., A. Gullberg, A., and Graur, D. (1996c). The “Phoca Standard”: An external molecular reference for calibrating recent evolutionary divergences. J. Mol. Evol. 43: 41–45.

    Google Scholar 

  • Arnason, U., Xu, X., and Gullberg, A. (1996d). Comparison between the complete mitochondrial DNA sequence of Homo and the common chimpanzee based on nonchimeric sequence. J. Mol. Evol. 42: 145–152.

    Google Scholar 

  • Arnason, U., Gullberg, A., and Janke, A. (1997). Phylogenetic analyses of mitochondrial DNA suggest a sister group relationship between Xenarthra (Edentata) and ferungulates. Mol. Biol. Evol. 14: 762–768.

    Google Scholar 

  • Arnason, U., Gullberg. A., and Janke, A. (1999). The mitochondrial DNA molecular sequence of the aardvark, Orycteropus afer, and the position of the Tubulidentata in the eutherian tree. Proc. Roy. Soc. Lond. B 266: 339–345.

    Google Scholar 

  • Arnason, U., Gullberg, A., Schweizer Burguete, A., and Janke, A. (2000a). Molecular estimates of primate divergences and new hypotheses for primate dispersal and the origin of modern humans. Hereditas 133: 217–228.

    Google Scholar 

  • Arnason, U., Gullberg. A., Gretarsdottir, S., Ursing, B., and Janke, A. (2000b). The mitochondrial genome of the sperm whale and a new molecular reference for estimating eutherian divergence dates. J. Mol. Evol. 50: 569–578.

    Google Scholar 

  • Arnason, U., Adegoke, J. A., Bodin, K., Born, E. W., Esa, Y. B., Gullberg. A., Nilsson, M., Short, R. V., Xu, S., and Janke, A. (2002). Mammalian mitogenomic relationships and the root of the eutherian tree. Proc. Nat. Acad. Sci. USA 99: 8151–8156.

    Google Scholar 

  • Asher, R. J. (2001). Cranial anatomy in tenrecid insectivorans: Character evolution across competing phylogenies. Amer. Mus. Nov. 3352: 1–54.

    Google Scholar 

  • Bajpai, S., and Gingerich, P. D. (1998). A new Eocene Archaeocete (Mammalia, Cetacea) from India and the time of origin of whales. Proc. Nat. Acad. Sci. USA 95: 15464–15468.

    Google Scholar 

  • Benton, M. J. (1997). Vertebrate Paleontology. Chapman and Hall, London.

    Google Scholar 

  • Benton, M. J. (1999). Early origins of modern birds and mammals: Molecules vs. morphology. BioEssays 21: 1043–1051.

    Google Scholar 

  • Buckley, T. R. (2002). Model misspecification and probabilistic tests of topology: Evidence from empirical data sets. Syst. Biol. 51: 509–523.

    Google Scholar 

  • Cao, Y., Adachi, J., Janke, A., Paabo, S., and Hasegawa, M. (1994). Phylogenetic relationships among eutherian orders estimated from inferred sequences of mitochondrial proteins: Instability of a tree based on a single gene. J. Mol. Evol. 39: 519–527.

    Google Scholar 

  • Cao, Y., Janke, A., Waddell, P. J., Westerman, M., Takenaka, O., Murata, S., Okada, N., Pbo, S., and Hasegawa, M. (1998). Conflict among individual mitochondrial proteins in resolving the phylogeny of eutherian orders. Mol. Biol. Evol. 47: 307–322.

    Google Scholar 

  • Charleston, M., and Page, R. D. M. 1997. Spectrum 2.0., Division of Environmental and Evolutionary Biology, Glasgow University.

  • Corneli, P. S., and Ward, R. H. (2000). Mitochondrial genes and mammalian phylogenies: Increasing the reliability of branch length estimation. Mol. Biol. Evol. 17: 224–234.

    Google Scholar 

  • Corneli, P. S. 2003. Can Molecular Data Sshake the Mammalian Tree? The Quality of Evidence from Complete mtDNA Ssequences. Ph.D. Dissertation, University of Utah.

  • Cutler, D. J. (2000). Estimating divergence times in the presence of an overdispersed molecular clock. Mol. Biol. Evol. 17: 1647–1660.

    Google Scholar 

  • D'Erchia, A. M., Gissi, C., Saccone, C., and Arnason, U. (1996). The guinea pig is not a rodent. Nature 381: 597–600.

    Google Scholar 

  • Delisle, I. and Strobeck, C. (2002). Conserved primers for rapid sequencing of the complete mitochondrial genome from carnivores, applied to three species of bears. Mol. Biol. Evol. 19: 357–361.

    Google Scholar 

  • Dragoo, J. W., and R. L. Honeycutt. (1997). Systematics of mustelid-like carnivores. J. Mammal. 78: 426–443.

    Google Scholar 

  • Edwards, A. W. F. (1992). Likelihood. The Johns Hopkins University Press, Baltimore.

    Google Scholar 

  • Efron, B., and Tibshirani, R. J. (1998). The jacknife. In: An Introduction to the Bootstrap, D. V. Hinkely, D. R. Cox, N. Reid, D. B. Rubin and B.W. Silverman, eds., pp.141–152, Monographs of Statistics and Applied Probability, Chapman and Hall/CRC, Boca Raton, Florida.

    Google Scholar 

  • Eirizik, E., Murphy, W. J., and O'Brien, S. J. (2001). Molecular dating and biogeography of the early placental mammal radiations. J. Heredity 92: 212–219.

    Google Scholar 

  • Eisenberg. (1981). The Mammalian Radiations: An Analysis of Trends in Evolution, Adaptation and Behavior. The University of Chicago Press, Chicago.

    Google Scholar 

  • Feduccia, A. (1995). Explosive evolution in tertiary birds and mammals. Science 267: 637–638.

    Google Scholar 

  • Felsenstein, J. (1981). Evolutionary trees from DNA sequences: A maximum likelihood approach. J. Mol. Evol. 17: 368–376.

    Google Scholar 

  • Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783–791.

    Google Scholar 

  • Felsenstein, J. (1993). PHYLIP (phylogenetic inference package), Version 3.6., Department of Genetics, University of Washington.

  • Flynn, J. M., and H. Galiano. (1982). Phylogeny of early tertiary Carnivora with a description of a new species of Protictis from the middle Eocene of northwestern Wyoming. Amer. Mus. Nov. 2725: 1–64.

    Google Scholar 

  • Foote, M., Hunter, J. P., Janis, C. M., and Sepkowski, J. J. (1999). Evolutionary and preservational constraints on origins of biologial groups: divergence times of eutherian mammals. Science 283: 1310–1314.

    Google Scholar 

  • Gadeleta, G., Pepe, G., DeCandia, G., Quadgliariello, C., Sbisa, E., and Saccone, C. (1989). The complete mitochondrial genome: Cryptic signals revealed by comparative analysis between vertebrates. J. Mol. Evol. 28: 497–516.

    Google Scholar 

  • Gillespie, J. H. (1991). The Causes of Molecular Evolution. Oxford University Press, New York.

    Google Scholar 

  • Gingerich, P. D., and Uhen, M. D. (1998). Likelihood estimation of the time of origin of Cetacea and the time of divergence of Cetacea and Artiodactyla. Palaeontologica Electronica 1: 1–45.

    Google Scholar 

  • Gissi, C., Gullberg. A., and Arnason, U. (1998). The complete mitochondrial DNA sequence of the rabbit, Oryctolagus cuniculus. Genomics 50: 161–169.

    Google Scholar 

  • Hasegawa, M., Kishino, H., and Yano, T. (1985). Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 21: 160–174.

    Google Scholar 

  • Hiendleder, S., Mainz, K., Plante, Y., and Lewalski, H. (1998). Analysis of mitochondrial DNA indicates that domestic sheep are derived from two different ancestral maternal sources: No evidence for contributions from urial and argali sheep. J. Hered. 89: 113–120.

    Google Scholar 

  • Higgins, D. G., A. J. Bleasby, and R. Fuchs. (1992). CLUSTAL V: Improved software for multiple sequence alignment. Comput. Applic. Biosci. 8: 189–191.

    Google Scholar 

  • Horai, S., Satta, Y., Hayasaka, K., Kondo, R., Inoue, T., T., I., Hayashi, S., and Takahata, N. (1992). Man's place in Hominoidea revealed by mitochondrial DNA genealogy. J. Mol. Evol. 35: 32–43.

    Google Scholar 

  • Horai, S., Hayasaka, K., Kondo, R., Tsigane, K., and Takhata, N. (1995). Recent African origin of the modern humans revealed by complete sequences of hominoid mitochondrial DNAs. Proc. Natl. Acad. Sci. USA 92: 532–536.

    Google Scholar 

  • Huelsenbeck, J. P. (1997). Is the Felsenstein zone a flytrap? Syst. Biol. 46: 69–74.

    Google Scholar 

  • Huelsenbeck, J. P., Larget, B., and Swofford, D. (2000). A compound Poisson process for relaxing the molecular clock. Genetics 154: 1879–1892.

    Google Scholar 

  • Jackson, J. E. (1991). A User's Guide to Principal Components, John Wiley and Sons, New York.

    Google Scholar 

  • Janis, C. M. (1993). Tertiary mammal evolution in the context of changing climates, vegetation.and tectonic events. Ann. Rev. Ecol. Syst. 24: 467–500.

    Google Scholar 

  • Jones, D. T., Taylor, W. R. and Thornton, J. M. (1992). The rapid generation of mutation data matrices from protein sequences. Comput. Appl. Biosci. 8: 275–282.

    Google Scholar 

  • Kay, R. F., Ross, C., and Williams, B. A. (1997). Anthropoid origins. Science 275: 797–804.

    Google Scholar 

  • Kim, K. S., Lee, S. E., Jeong, H. W., and Ha, J. H. (1998). The complete nucleotide sequence of the domestic dog (Canis familiaris) mitochondrial genome. Mol. Phylogenet. Evol. 10: 210–220.

    Google Scholar 

  • Kishino, H. and Hasegawa, M. (1989). Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. J. Mol. Evol. 29: 170–179.

    Google Scholar 

  • Kishino, H., Thorne, J. L. and Bruno, W. J. (2001). Performance of a divergence time estimation method under a probabilistic model of rate evolution. Mol. Biol. Evol. 18: 352–361.

    Google Scholar 

  • Koepfli, K., and R. K. Wayne. (1998). Phylogenetics of otters (Carnivora: Mustelidae) based on mitochondrial cytochrome b seqeunces. J. Zool. 246: 401–416.

    Google Scholar 

  • Kretteck, A., Gullberg, A., and Arnason, U. (1995). Sequence analysis of the complete mitochondrial DNA molecule of the hedgehog, Erinaceous europeaus, and the phylogenetic position of the Lipotyphla. J. Mol. Evol. 41: 952–957.

    Google Scholar 

  • Lin, Y.-H., and Penny, D. (2001). Implications for bat evolution from two new complete mitochondrial genomes. Mol. Biol. Evol. 18: 684–688.

    Google Scholar 

  • Lin, Y.-H., McLenachan, P. A., Gore, A. R., Phillips, M. J. Ota, R., Hendy, M. and Penny, D. (2002). Four new mitochondrial genomes and the increased stability of evolutionary trees of mammals from improved taxon sampling. Mol. Biol. Evol. 19: 2060–2070.

    Google Scholar 

  • Lockhart, P. J., Steel, M. A., M. D., H., and Penny, D. (1994). Recovering evolutionary trees under a more realistic model of sequence evolution. Mol. Biol. Evol. 11: 605–612.

    Google Scholar 

  • Lopez, J. V., Cervario, S., O'Brien, S. F. (1996). Complete nucleotide sequence of the domestic cat (Felis catus) mitochondrial genome and a tandem repeat (Numt) in the nuclear genome. Genomics 33(2): 229–246.

    Google Scholar 

  • Maddison, D. R., and Maddison, W. P. (2000). MacClade 4: Analysis of Phylogeny and Character Evolution. Version 4.0. 4.0. Sinauer Associates, Sunderland, Massachusetts.

  • Madsen, O., Scally, M., Douady, C. J., Kao, D. J., DeBry, R. W., Adkins, R., Amrine, H. M., Stanhope, M. J., de Jong, W. W., and Springer, M. S. (2001). Parallel adaptive radiations in two major clades of placental mammals. Nature 409: 610–614.

    Google Scholar 

  • Martens, P. A. and Clayton, D. A. (1979). Mechanism of mitochondrial DNA replication of the light-stranded origin of replication. J. Mol. Evol. 135: 327–351.

    Google Scholar 

  • Martin, L. D. (1989). Fossil history of the terrestrial Carnivora. In: Carnivore Behavior, Ecology and Evolution, J. L. Gittleman, ed., pp. 536–568, Comstock, Ithaca, NY.

    Google Scholar 

  • Mouchaty, S. K., Gullberg, A., Janke A., and Arnason, U. (2000). The phylogenetic position of the Talpidae within eutheria based on analysis of complete mitochondrial sequences. Mol. Biol. Evol. 17(1): 60–67.

    Google Scholar 

  • Mouchaty, S. K., Catzeflis, F., Janke, A., and Arnason, U. (2001). Molecular evidence of an African Phiomorpha-South American Caviamorpha clade and support for Hystricognathi based on the complete mitochondrial genome of the Cane Rat (Thryonomys swinderianus). Mol. Phylogenet. Evol. 18: 127–135.

    Google Scholar 

  • Murphy, W. J., Eizirik, E., Johnson, W. E., Zhang, Y. P., Ryder, O. A., and O'Brien, S. J. (2001a). Molecular phylogenetics and the origin of placental mammals. Nature 409: 614–618.

    Google Scholar 

  • Murphy, W. J., Eizirik, E., O'Brien, S. J., Madsen, O., Scally, M., Douady, C. J., Teeling, E., Ryder, O. A., Stanhope, M. J., de Jong, W. W., and Springer, M. S. (2001b). Resolution of early placental mammal radiation using Bayesian phylogenetics. Science 294: 2348–2351.

    Google Scholar 

  • Nikaido, M., Kawai, K., Cao, Y., Harada, M., Tomita, S., Okada, N., and Hasegawa, M. (2001). Maximum likelihood analysis of the complete mitochondrial genomes of eutherians and a reevaluation of the phylogeny of bats and insectivores. J. Mol. Evol. 53(4–5): 508–516.

    Google Scholar 

  • Novacek, M. J. (1992). Mammalian phylogeny: Shaking the tree. Nature 356: 121–125.

    Google Scholar 

  • Novacek, M. J. (2001). Mammalian phylogeny: Genes and supertrees. Current Biology 11: R573-R575.

  • Nowak, R. M. (1991). Walker's Mammals of the World. The Johns Hopkins University Press, Baltimore.

    Google Scholar 

  • Penny, D., and Hendy, M. D. (1986). Estimating the reliability of evolutionary trees. Mol. Biol. Evol. 3: 403–417.

    Google Scholar 

  • Penny, D., and Hasegawa, M. (1997). The platypus put in its place. Nature 387: 549–550.

    Google Scholar 

  • Posada, D., and Crandall, K. A. (1998). MODELTEST: Testing the model of DNA substitution. Bioinformatics 14: 817–818.

    Google Scholar 

  • Prothero, D. R. (1994.). The Eocene-Oligocene Transition: Paradise Lost, Columbia University Press, New York.

    Google Scholar 

  • Pumo, D. E., Finamore, P. S., Franek, W. R., Phillips, C. J., Tarsami, S., and Balzarano, D. (1998). Complete mitochondrial genome of a neotropical fruit bat, Artibeus jamaicensis, and a new hypothesis of the relationships of bats to other eutherian mammals. J. Mol. Evol. 47: 709–717.

    Google Scholar 

  • Radinsky, L. B. (1982). Evolution of skull shape in carnivores 3. The origin and early radiation of the modern carnivore families. Paleobiol. 8: 177–195.

    Google Scholar 

  • Rambaut, A., and Bronham, L. (1998). Estimating divergence dates from the molecular sequences. Mol. Biol. Evol. 15: 442–448.

    Google Scholar 

  • Rambaut, A., and Charleston, M. (2001). TreeEdit: Phylogenetic Tree Editor, Version 1.0 alpha 8, Oxford University Department of Zoology.

  • Reyes, A., Pesole, G., and Saccone, C. (1998). Complete mitochondrial DNA sequence of the fat dormouse: Further evidence of rodent paraphyly. Mol. Biol. Evol. 15: 499–505.

    Google Scholar 

  • Reyes, A., Gissi, C., Pesole, G., Catzeflis, F. M., and Saccone, C. (2000). Where do rodents fit? Evidence from the complete mitochondrial genome of Sciurus vulgaris. Mol. Biol. Evol. 17: 979–983.

    Google Scholar 

  • Sanderson, M. J. (1997). A nonparametric approach to estimating divergence times in the absence of rate constancy. Mol. Biol. Evol. 14: 1218–1231.

    Google Scholar 

  • Scally, M., Madsen, O., Douady, C. J., de Jong, W. W., Stanhope, M. J, and Springer, M. S. (2001). Molecular evidence for the major clades of placental mammals. J. Mammal. Evol. 8: 239–277.

    Google Scholar 

  • Schmitz, J., Ohme, M., and Zischler, H. (2000). The complete mitochondrial genome of Tupaia belangeri and the phylogenetic affiliation of Scandentia to other eutherian orders. Mol. Biol. Evol. 17: 1334–1343.

    Google Scholar 

  • Shimodaira, H., and Hasegawa, M. (1999). Multiple comparisons of log-likelihood with applications to phylogenetic inference. Mol. Biol. Evol. 16: 1114–1116.

    Google Scholar 

  • Simpson, G. G. (1945). The principles of classification and a classification of the mammals. Bull. Amer. Mus. Nat. Hist. 85: 1–350.

    Google Scholar 

  • Springer, M. S., Murphy, W.J., Eizirik, E. and O'Brien, S.J. (2003). Placental mammal diversification and the Cretaceous-Tertiary boundary. Proc. Natl. Acad. Sci. USA 100: 1056–1061.

    Google Scholar 

  • Stanhope, M. J., Waddell, V. G., Madsen, O., de Jong, W. W., Hedges, S. B., Cleven, G. C., Kao, D. J., and Springer, M. S. (1998). Molecular evidence for multiple origins of insectivora and for a new order of endemic african insectivore mammals. Proc. Nat. Acad. Sci. USA 95: 9967–9972.

    Google Scholar 

  • Swofford, D. L. (2001). Paup*. Phylogenetic Analysis Using Parsimony (*and Other Methods), Versions 4.0b2–10. Sinauer Associates, Sunderland, Massachusetts.

    Google Scholar 

  • Teeling, E. C., Scally, M., Kao, D. J., Romagnoli, M. L., Springer, M. S., and Stanhope, M. J. (2000). Molecular evidence regarding the origin of echolocation and flight in bats. Nature. 403: 188–192.

    Google Scholar 

  • Teeling, E. C., Madsen, O., Van Den Bussche, R. A., de Jong, W. W., Stanhope, M. J., and Springer, M. S. (2002). Microbat paraphyly and the convergent evolution of a key innovation in Old World rhinolophoid microbats. Proc. Natl. Acad. Sci. USA 99: 1431–1436.

    Google Scholar 

  • Ursing, 1998, AUTHOR SEE TABLE I.

  • Ursing, B., and Arnason, U. (1998). The complete mitochondrial DNA sequence of the pig. J. Mol. Evol. 47: 302–306.

    Google Scholar 

  • Ursing, B., Slack, K. E., and Arnason, U. (2000). Subordinal artiodactyl relationships in the light of phylogenetic analysis of 12 mitochondrial protein-coding genes. Zool. Script. 29: 83–88.

    Google Scholar 

  • Waddell, P. J., Okada, N., and Hasagawa, M. (1999). Towards resolving the interordinal relationships of placental mammals. Syst. Biol. 48: 1–5.

    Google Scholar 

  • Wang, X., and Tedford, R. H. (1994). Basicranial anatomy and phylogeny of primitive canids and closely related miacids (Carnivora: Mammalia). Amer. Mus. Nov. 3092: 1–34.

    Google Scholar 

  • Wilson, D. E., and Reeder, D. M. (1993). Mammal Species of the World. Smithsonian Institution Press, Washington, D.C.

  • Xu, X., and Arnason, U. (1994). The complete mitochondrial DNA sequence of the horse, Equus cabellus: Extensive heteroplasmy of the control region. Gene 148: 357–362.

    Google Scholar 

  • Xu, X., and Arnason, U. (1996). A complete sequence of the mitochondrial genome of the western lowland gorilla. Mol. Biol. Evol. 3: 691–698.

    Google Scholar 

  • Xu, X., and Arnason, U. (1997). The complete mitochondrial DNA sequence of the white rhinocerus, Ceratotherium simum, and comparison with the mtDNA sequence of the indian Rhinoceros, Rhinoceros unicornis. Mol. Phylogenet. Evol. 7: 189–194.

    Google Scholar 

  • Xu, X., Gullberg. A., and Arnason, U. (1996). The complete mitochondrial DNA (mtDNA) of the donkey and mtDNA comparisons among four closely-related species-pairs. J. Mol. Evol. 43: 438–446.

    Google Scholar 

  • Yang, Z. (1995). Evaluation of several methods for estimating phylogenetic trees when substitution rates differ over nucleotide sites. J. Mol. Evol. 40: 689–697.

    Google Scholar 

  • Yoder, A. D., and Z. Yang. (2000). Estimation of primate speciation dates using local molecular clocks. Mol. Biol. Evol. 17: 1081–1090.

    Google Scholar 

  • Zardoya, R., and Meyer, A. (1996). Phylogenetic performance of mitochondrial protein-coding genes in resolving relationships among vertebrates. Mol. Biol. Evol. 13: 933–942.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corneli, P.S. Complete Mitochondrial Genomes and Eutherian Evolution. Journal of Mammalian Evolution 9, 281–305 (2002). https://doi.org/10.1023/A:1023926013667

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023926013667

Navigation