, Volume 27, Issue 3, pp 129–135 | Cite as

Forsythia fructus Inhibits the Mast-Cell-Mediated Allergic Inflammatory Reactions

  • Mi-Sun Kim
  • Ho-Jeong Na
  • Seung-Woo Han
  • Jong-Sik Jin
  • Un-Yong Song
  • Eon-Jeong Lee
  • Bong-Keun Song
  • Seung-Heon Hong
  • Hyung-Min Kim


Mast cells are key as effector cells in the early phase allergic inflammation and in diverse immunological and pathological processes. Forsythia fructus (F. fructus) has used as a traditional medicine for inflammatory diseases. In the present study, we determined the effect of F. fructus extracts on compound 48/80-induced paw oedema and vascular permeability in vivo. In addition, we investigated in vitro whether F. fructus has inhibitory effects on compound 48/80-induced histamine releases from rat peritoneal mast cells (RPMC), and on phorbol 12-myristate 13-acetate (PMA) plus A23187-induced tumor necrosis factor-α (TNF-α) releases from human mast cells (HMC-1). In mice orally administrered F. fructus (100 μg/g) for 1 h, compound-48/80-induced oedema and vascular permeability were significantly reduced rather than those receiving intravenous injection of ketotifen, mast cell stabilizer. F. fructus dose-dependently inhibited the histamine release induced by compound 48/80 from RPMCs. Moreover, F. fructus had no cytotoxic effects on cell viability and had inhibitory effects on TNF-α secretion from HMC-1. These results suggest that F. fructus is a potential herb medicine for treatment of inflammatory diseases through downmodulating mast cell activation.

Forsythia fructus mast cells oedema histamine tumor necrosis factor-α 


  1. 1.
    Ozaki, Y., J. Rui, and Y. T. Tang. 2000. Antiinflammatory effect of Forsythia suspense V(AHL) and its active principle. Biol. Pharm. Bull. 23:356–357.Google Scholar
  2. 2.
    Lee, E. B. and H. J. Keum. 1988. Pharmacological studies on Forsythia fructus. Kor. J. Pharmacognosy. 19:262–269.Google Scholar
  3. 3.
    Lentsch, A. B. and P. A. Ward. 2000. Regulation of inflammatory vascular damage. J. Pathol. 190:343–348.Google Scholar
  4. 4.
    Metcalfe, D. D., D. Baram, and Y. A. Mekori. 1999. Mast cells. Physiol. Rev. 77:1033–1079.Google Scholar
  5. 5.
    Pearce, F. L. 1989. Mast cells: Function, differentiation and activation. Curr. Opin. Immunol. 1:630–636.Google Scholar
  6. 6.
    Murrant, T. and D. Bihari. 2000. Anaphylaxis and anaphylactoid reactions. Int. J. Clin. Pract. 54:322–328.Google Scholar
  7. 7.
    Krishnaswamy, G., J. Kelley, D. Johnson, G. Youngberg, W. Stone, S. K. Huang, J. Bieber, and D. S. Chi. 2001. The human mast cell: Functions in physiology and disease. Front. Biosci. 6:1109–1127.Google Scholar
  8. 8.
    Bradding, P. and S. T. Holgate. 1999. Immunopathology and human mast cell cytokines. Crit. Rev. Oncol. Hematol. 31:119–133.Google Scholar
  9. 9.
    White, M. 1999. Mediators of inflammation and the inflammatory process. J. Allergy Clin. Immunol. 103:S378-S381.Google Scholar
  10. 10.
    Guo, Y., T. Mochizuki, E. Morii, Y. Kitamura, and K. Maeyama. 1997. Role of mast cell histamine in the formation of rat paw edema: A microdialysis study. Eur. J. Pharmacol. 331:237–243.Google Scholar
  11. 11.
    Assanasen, P. and R. M. Naclerio. 2002. Antiallergic anti-inflammatory effects of H1-antihistamines in humans. Clin. Allergy Immunol. 17:101–139.Google Scholar
  12. 12.
    Kobayashi, H., T. Ishizuka, and Y. Okayama. 2000. Human mast cells and basophils as sources of cytokines. Clin. Exp. Allergy. 30:1205–1212.Google Scholar
  13. 13.
    Männel, D. N. and B. Echtenacher. 2000. TNF in the inflammatory response. Chem. Immunol. 74:141–161.Google Scholar
  14. 14.
    Meng, H., M. G. Tonnesen, M. J. Marchase, R. A. Clark, W. F. Bahou, and B. L. Gruber. 1995. Mast cells are potent regulator endothelial cell adhesion molecule ICAM-1 and VCAM-1 expression. J. Cell. Physiol. 165:40–53.Google Scholar
  15. 15.
    Iuvone, T., R. van den Bossche, F. D'Acquisto, R. Carnuccio, and A. G. Herman. 1999. Evidence that mast cell degranulation, histamine and tumor necrosis factor α release occur in LPS-induced plasma leakage in rat skin. Br. J. Pharmacol. 128:700–704.Google Scholar
  16. 16.
    Queralt, M., P. Brazis, M. Merlos, F. de Mora, and A. Puigdemont. 2000. In vitro inhibitory effect of rupatadine on histamine and TNF-α release from dispersed canine skin mast cells and the human mast cell line HMC-1. Inflamm. Res. 49:355–360.Google Scholar
  17. 17.
    Sawynok, J., A. Reid, and X. J. Lie. 2000. Involvement of mast cells, sensory afferents and sympathetic mechanisms in paw oedema induced by adenosine A1 and A2B/3receptor agonists. Eur. J. Pharmacol. 395:47–50.Google Scholar
  18. 18.
    Linardi, A., S. K. Costa, G. R. da Silva, and E. Antunes. 2000. Involvement of kinins, mast cells and sensory neurons in the plasma exudation and paw oedema induced by staphylococcal enterotoxin B in the mouse. Eur. J. Pharmacol. 399:235–242.Google Scholar
  19. 19.
    Bronner, C., C. Wiggins, D. Monte, F. Marki, A. Capron, Y. Landry, and R. C. Franson. 1987. Compound 48/80 is a potent inhibitor of phospholipase C and a dual modulator of phospholiphase A2 from human platelet. Biochim. Biophys. Acta 920:301–305.Google Scholar
  20. 20.
    Grant, S. M., K. L. Goa, A. Fitton, and E. M. Sorkin. 1990. Ketotifen. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in asthma and allergic disorders. Drugs 40:412–448.Google Scholar
  21. 21.
    Hong, S. H., M. S. Kim, J. Y. Lee, C. Y. Hwang, S. H. Baek, D. S. Han, W. Y. Jung, S. B. Seo, T. Kajiuchi, and H. M. Kim. 2001. Novel finding in inhibition of mast cell-dependent immediate-type coetaneous reactions by Gahmi-Shini-San. Clin. Chim. Acta 309:85–90.Google Scholar
  22. 22.
    Yi, J. M., M. S. Kim, S. W. Seo, K. N. Lee, C. S. Yook, and H. M. Kim. 2001. Acanthopanax senticosus root inhibits mast cell-dependent anaphylaxis. Clin. Chim. Acta. 312:163–168.Google Scholar
  23. 23.
    Kim, M. S., W. K. Lim, J. G. Cha, N. H. An, S. J. Yoo, J. H. Park, H. M. Kim, and Y. M. Lee. 2001. The activation of PI 3-K and PKC-ζ in PMA-induced differentiation of HL-60 cells. Cancer Lett. 171:79–85.Google Scholar
  24. 24.
    Furitsu, T., T. Tsujimura, T. Tono, H. Ikeda, H. Kitamura, U. Koshimizu, H. Sigahara, J. H. Butterfield, L. K. Ashman, Y. Kanayama, Y. Matsuzawa, Y. Kitamura, and Y. Kanakura. 1993. Identification of mutations in the coding sequence of the photooncogene c-kit in a human mast cell leukemia cell line causing ligand-independent activation of c-kit product. J. Clin. Invest. 92:1736–1744.Google Scholar
  25. 25.
    Nilsson, G., T. Blom, M. Kusche-Gullberg, L. Kjellén, J. H. Butterfield, C. Sundström, K. Nilsson, and L. Hellman. 1994. Phenotypic characterization of the human mast-cell line HMC-1. Scand. J. Immunol. 39:489–498.Google Scholar
  26. 26.
    Möller, A., B. M. Henz, A. Grützkau, U. Lippert, Y. Aragane, T. Schwarz, and S. Krüger-Krasagakes. 1998. Comparative cytokine gene expression: Regulation and release by human mast cells. Immunology 93:289–295.Google Scholar
  27. 27.
    Vergnolle, N., M. D. Hollenberg, K. A. Sharkey, and J. L. Wallace. 1999. Characterization of the inflammatory response to proteinase-activated receptor-2 (PAR2)-activating peptides in the rat paw. Br. J. Pharmacol. 127:1083–1090.Google Scholar
  28. 28.
    Kawabata, A., R. Kuroda, T. Minami, K. Kataoka, and M. Taneda. 1998. Increased vascular permeability by a specific agonist of protease-activated receptor-2 in rat hindpaw. Br. J. Pharmacol. 125:419–422.Google Scholar
  29. 29.
    Coderre, T. J., A. I. Basbaum, and J. D. Levine. 1989. Neural control of vascular permeability: Interactions between primary afferents, mast cells, and sympathetic efferents. J. Neurophysiol. 62:48–58.Google Scholar
  30. 30.
    García, G., P. Brazís, N. Majó, L. Ferrer, F. de Mora, and A. Puigdemont. 1997. Comparative morphofunctional study of dispersed mature canine cutaneous mast cells and BR cells, a poorly differentiated mast cell line from dog subcutaneous mastocytoma. Vet. Immunol. Immunopathol. 62:323–337.Google Scholar
  31. 31.
    Leal-Berumen, I., P. Conlon, and J. S. Marshall. 1994. IL-6 production by rat peritoneal mast cells is not necessarily preceded by histamine release and can be induced by bacterial lipopolysaccharide. J. Immunol. 152:5468–5476.Google Scholar
  32. 32.
    Mazzari, S., R. Canella, L. Petrelli, G. Marcolongo, and A. Leon. 1996. N-(2-hydroxyethyl)hexadecanamide is orally active in reducing edema formation and inflammatory hyperalgesia by down-modulating mast cell activation. Eur. J. Pharmacol. 300:227–236.Google Scholar
  33. 33.
    Hultsch, T., K. D. Müller, J. G. Meingassner, M. Grassberger, R. E. Schopf, and J. Knop. 1998. Ascomycin macrolactam derivative SDZ ASM 981 inhibits the release of granule-associated mediators and of newly synthesized cytokines in RBL 2H3 mast cells in an immunophilin-dependent manner. Arch. Dermatol. Res. 290:501–507.Google Scholar
  34. 34.
    Assanasen, P. and R. M. Naclerio. 2002. Antiallergic anti-inflammatory effects of H1-antihistamine in humans. Clin. Allergy Immunol. 17:101–139.Google Scholar
  35. 35.
    Queralt, M., C. Brazís, M. Merlos, and A. Puigdemont. 1998. Inhibitory effects of rupatadine on mast cell histamine release and skin wheal development induced by Ascaris suum in hypersensitive dogs. Drug Dev. Res. 44:49–55.Google Scholar
  36. 36.
    Ozaki, Y., J. Rui, Y. Tang, and M. Satake. 1997. Antiinflammatory effect of Forsythia suspense Vahl and its active fraction. Biol. Pharm. Bull. 20:861–864.Google Scholar
  37. 37.
    Janaki, S., V. Vijayasekaran, S. Viswanathan, and K. Balakrishna. 1999. Anti-inflammatory activity of Aglaia roxburghiana var. beddomei extract and trierpenes roxburghiadiol A and B. J. Ethnopharmacol. 67:45–51.Google Scholar
  38. 38.
    Moreno, L., R. Bello, E. Primo-Yufera, and J. Esplugues. 2002. Pharmacological properties of the methanol extract from Mentha suaveolens Ehrh. Phytother. Res. 1:S10-S13.Google Scholar
  39. 39.
    Lee, E. B., D. W. Li, J. E. Hyun, I. H. Kim, and W. K. Whang. 2001. Antiinflammatory activity of methanol extract of Kalopanax pictus bark and its fractions. J. Ethnopharmacol. 77:197–201.Google Scholar
  40. 40.
    Romagnani, S. 2000. The role of lymphocytes in allergic disease. J. Allergy Clin. Immunol. 105:399–408.Google Scholar
  41. 41.
    Romagnani, S. 2001. Cytokines and chemoattractants in allergic inflammation. Mol. Immunol. 38:881–885.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Mi-Sun Kim
    • 1
    • 2
  • Ho-Jeong Na
    • 1
    • 2
  • Seung-Woo Han
    • 1
  • Jong-Sik Jin
    • 1
  • Un-Yong Song
    • 3
  • Eon-Jeong Lee
    • 3
  • Bong-Keun Song
    • 3
  • Seung-Heon Hong
    • 1
  • Hyung-Min Kim
    • 2
  1. 1.Department of Oriental Pharmacy, College of PharmacyWonkwang UniversityIksan, JeonbukSouth Korea.
  2. 2.Department of Pharmacology, College of Oriental MedicineKyung Hee UniversityDongdaemun-Gu, SeoulSouth Korea
  3. 3.College of Oriental MedicineWonkwang UniversityIksan, JeonbukSouth Korea

Personalised recommendations