Advertisement

Ukrainian Mathematical Journal

, Volume 54, Issue 10, pp 1602–1610 | Cite as

Invariant Geometric Objects of the Canonical Almost-Geodesic Mapping π2 (e = 0)

  • T. I. Hryhor'eva
Article
  • 30 Downloads

Abstract

For the canonical almost-geodesic mapping π2 (e = 0), we prove an analog of the Beltrami theorem in the theory of geodesic mappings. We introduce canonical π2-flat spaces and obtain metrics for them in a special coordinate system.

Keywords

Coordinate System Geometric Object Geodesic Mapping Special Coordinate Special Coordinate System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    N. S. Sinyukov, Geodesic Mappings of Riemannian Spaces [in Russian], Nauka, Moscow (1979).Google Scholar
  2. 2.
    J. Mikeš,“Geodesic mappings of affine connected and Riemannian spaces,” in: VINITI Series in Contemporary Mathematics and Its Applications. Thematic Surveys: Geometry [in Russian], Vol. 11, No.2, VINITI, Moscow (1994).Google Scholar
  3. 3.
    M. Shiha, Geodesic and Holomorphically Projective Mappings of Parabolic Kählerian Spaces [in Russian], Candidate-Degree Thesis (Physics and Mathematics), Moscow (1993).Google Scholar
  4. 4.
    T. Thomas, “On the projective and equiprojective of paths,” Proc. Nat. Acad. Sci., 11, 198–203 (1925).Google Scholar
  5. 5.
    H. Weyl, “Zur infinitesimal geometrie Einordnung der projektiven und der Konformen Auffassung,” Götting. Nachr., 99–119 (1921).Google Scholar
  6. 6.
    E. Beltrami, “Teoria fondamental degli spazii di curvatura costante,” Ann. Mat., 2, No. 2, 232–255 (1902).Google Scholar
  7. 7.
    P. A. Shirokov, Selected Works on Geometry [in Russian], Kazan University, Kazan (1966).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • T. I. Hryhor'eva
    • 1
  1. 1.South-Ukrainian Pedagogic UniversityOdessa

Personalised recommendations