Advertisement

Ukrainian Mathematical Journal

, Volume 54, Issue 10, pp 1567–1582 | Cite as

On the Convergence of Fourier Series with Orthogonal Polynomials inside and on the Closure of a Region

  • F. G. Abdullaev
  • M. Küçükaslan
Article
  • 45 Downloads

Abstract

We study the rate of convergence of Fourier series of orthogonal polynomials over an area inside and on the closure of regions of the complex plane.

Keywords

Fourier Series Complex Plane Orthogonal Polynomial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    C. N. Mergelyan, “On the completeness of systems of analytic functions,” Usp. Mat. Nauk., 8, No. 4(56), 3–63 (1953).Google Scholar
  2. 2.
    P. K. Suetin, “Polynomials orthogonal over a region and Bieberbach polynomials,” Proc. Steklov Inst. Math., 100 (1974).Google Scholar
  3. 3.
    F. G. Abdullayev, “Uniform convergence of the generalized Bieberbach polynomials in the regions with non-zero angles,” Acta Math. (Hung.), 77, 223–246 (1997).Google Scholar
  4. 4.
    F. G. Abdullaev, “On the speed convergence of Fourier series of orthogonal polynomials in domains with piecewise-quasiconformal boundary,” in: Theory of Mappings and Approximation of Functions, Naukova Dumka, Kiev (1989), pp. 3–11.Google Scholar
  5. 5.
    F. G. Abdullaev and V. V. Andrievskii, “On orthogonal polynomials over domains with K-quasiconformal boundary,” Izv. Akad. Nauk. Azerb. SSR, Ser. F.T.M., No. 1, 3–7 (1983).Google Scholar
  6. 6.
    F. G. Abdullaev, “On the convergence of Fourier series of orthogonal polynomials in domains with arbitrary K-quasiconformal boundary,” Izv. Akad. Nauk. Azerb. SSR, Ser. F.T.M., No. 4, 3–7 (1983).Google Scholar
  7. 7.
    C. Pommerenke, Univalent Functions, Vandenhoeck & Ruprecht, Göttingen, 1975.Google Scholar
  8. 8.
    D. Gaier, “Estimates of conformal mappings near the boundary,” Indiana Univ. Math. J., 21, 581–595 (1972).Google Scholar
  9. 9.
    F. D. Lesley, “Hölder continuity of conformal mappings at the boundary via the strip method,” Indiana Univ. Math. J., 31, 341–354 (1982).Google Scholar
  10. 10.
    S. E. Warschawskii, “On differentiability at the boundary in conformal mapping,” Proc. Amer. Math. Soc., 12, 614–620 (1961).Google Scholar
  11. 11.
    S. E. Warschawskii, “On the Hölder continuity at the boundary in conformal maps,” J. Math. Mech., 18, 423–427 (1968).Google Scholar
  12. 12.
    V. V. Andrievskii, B. I. Belyi, and V. K. Dzyadyk, Conformal Invariants in Constructive Theory of Functions of Complex Variable, World Federation, Atlanta (1995).Google Scholar
  13. 13.
    F. G. Abdullaev, “On the interference of the weight and boundary contour for orthogonal polynomials over the region,” J.C.A.A.A. (to appear).Google Scholar
  14. 14.
    V. V. Andrievskii, “Constructive characterization of harmonic functions in domains with quasiconformal boundary,” in: Quasiconformal Continuation and Approximation by Functions in a Set of the Complex Plane [in Russian], Kiev (1985), pp. 3–14.Google Scholar
  15. 15.
    L. V. Ahlfors, Lectures on Quasiconformal Mappings, van Nostrand, New YorkJędrysekPrinceton, NJ (1966).Google Scholar
  16. 16.
    D. Gaier, “On the convergence of the Bieberbach polynomials in regions with corners,” Const. Approxim., 4, 289–305 (1988).Google Scholar
  17. 17.
    V. I. Belyi, “Conformal mappings and approximation of analytic functions in domains with quasiconformal boundary,” Mat. Sb., 289–317 (1977).Google Scholar
  18. 18.
    J. M. Anderson, F. W. Gehring, and A. Hinkkanen, “Polynomial approximation in quasidisks,” Different. Geom. Complex Analysis, 75–86 (1985).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • F. G. Abdullaev
    • 1
  • M. Küçükaslan
    • 2
  1. 1.Mersin UniversityTurkey
  2. 2.Çukurova UniversityTurkey

Personalised recommendations