Efficient Method of Optimization of Physical Processes

  • V. K. Tolstykh
Article
  • 14 Downloads

Abstract

New extremum algorithms which provide a uniform convergence to an optimum value in the space of functions are suggested. Their distinctive feature lies in analytical determination of the gradient of the objective functional of the problem of optimization and in original control of the direction of descent of a relatively infinite‐dimensional gradient.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    A. I. Egorov, Optimum Monitoring of Thermal and Diffusion Processes[in Russian], Moscow (1978).Google Scholar
  2. 2.
    O. M. Alifanov, E. A. Artyukhin, and S. V. Rumyantsev, Extremum Methods for Solving Ill-Posed Problems and Their Applications to Inverse Problems of Heat Transfer[in Russian], Moscow (1988).Google Scholar
  3. 3.
    V. K. Tolstykh, Direct Extremum Approach to Optimization of Systems with Distributed Parameters[in Russian], Donetsk (1997).Google Scholar
  4. 4.
    F. L. Chermous'ko and I. V. Banichuk, Variational Problems of Mechanics and Control[in Russian], Moscow (1973).Google Scholar
  5. 5.
    R. H. W. Hoppe and S. I. Petrova, "Applications of the Newton Interior-Point Method for Maxwell's Equations," in: M. Deville and R. Owens (eds.), Proc. 16th IMACS World Congr. on Sci. Computat., Appl. Math. and Simulat., Lausanne, Switzerland (2000). CD ROM ISBN 3-9522075-1-9.Google Scholar
  6. 6.
    J. Nocedal and S. J. Wright, Numerical Optimization, Springer, New York (1999).Google Scholar
  7. 7.
    C. T. Kelly, Iterative Methods for Optimization, SIAM, Philadelphia (1999).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • V. K. Tolstykh
    • 1
  1. 1.Donetsk National UniversityDonetskUkraine

Personalised recommendations