Journal of Structural Chemistry

, Volume 43, Issue 6, pp 1040–1044 | Cite as

Genetic Algorithm for Predicting Structures and Properties of Molecular Aggregates in Organic Substances

  • M. A. Grishina
  • E. V. Bartashevich
  • V. A. Potemkin
  • A. V. Belik


A genetic algorithm for predicting the structures and properties of molecular aggregates in organic substances is proposed. It has been used for modeling the most probable dimers and trimers existing in 137 organic liquids. It has been shown that the geometric and energetic features of modeled aggregates agree with known data. The energy of aggregation correlates with the enthalpy of evaporation of substances. The dependence of the energetic and geometric features of aggregates on the chemical nature of their constituent molecules is discussed.


Physical Chemistry Evaporation Enthalpy Inorganic Chemistry Genetic Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yu. I. Naberukhin, V. A. Luchnikov, G. G. Malenkov, and E. A. Zheligovskaya, Zh. Strukt. Khim., 38, No. 4, 723-732 (1997).Google Scholar
  2. 2.
    P. M. Zorkii, E. V. Sokolov, G. G. Malenkov, and L. V. Lanshina, Zh. Fiz. Khim., 74, No. 11, 1951-1956 (2000).Google Scholar
  3. 3.
    N. C. Ekdawi-Sever, P. B. Conrad, and J. J. de Pablo, J. Phys. Chem. A, 105, No. 4, 734-742 (2001).Google Scholar
  4. 4.
    S. Kirkpatrick, C. D. Gelatt, and M. P. Vecci, Science, 220, 671 (1983).Google Scholar
  5. 5.
    D. J. Wales and M. P. Hodges, Chem. Phys. Lett., 286, 65-72 (1998).Google Scholar
  6. 6.
    C. R. Zacharias, M. R. Lemes, and A. Dal Pino, Jr., J. Mol. Struct. (Theochem), 430, 29-39 (1998).Google Scholar
  7. 7.
    M. Keser and S. I. Stupp, Comput. Chem., 22, 345-351 (1998).Google Scholar
  8. 8.
    N. L. Allinger, F. Li, and L. Yan, J. Comput. Chem., 11, 848-867 (1990).Google Scholar
  9. 9.
    N. L. Allinger, F. Li, L. Yan, and J. C. Tai, ibid., pp. 868-895.Google Scholar
  10. 10.
    J.-H. Lii and N. L. Allinger, J. Comput. Chem., 19, 1001-1016 (1998).Google Scholar
  11. 11.
    V. A. Potemkin, E. V. Bartashevich, and A. V. Belik, Zh. Fiz. Khim., 72, No. 4, 650-656 (1998).Google Scholar
  12. 12.
    V. A. Potemkin, E. V. Bartashevich, and A. V. Belik, Zh. Fiz. Khim., 70, No. 3, 448-452 (1996).Google Scholar
  13. 13.
    O. V. Grineva and P. M. Zorkii, Zh. Fiz. Khim., 72, No. 4, 714-720 (1998).Google Scholar
  14. 14.
    O. V. Grineva and P. M. Zorkii, Zh. Fiz. Khim., 74, No. 11, 1937-1943 (2000).Google Scholar
  15. 15.
    B. P. Nikol'skii (ed.), Chemistry Handbook, [in Russian], Vol. 2, Khimiya, Leningrad (1964), pp. 398-1153.Google Scholar
  16. 16.
    A. A. Potekhin (ed.), Properties of Organic Compounds [in Russian], Khimiya, Leningrad (1984).Google Scholar
  17. 17.
    V. A. Rabinovich and Z. Ya. Khavin, Brief Chemistry Handbook [in Russian], Khimiya, Leningrad (1978).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • M. A. Grishina
    • 1
    • 2
  • E. V. Bartashevich
    • 1
    • 2
  • V. A. Potemkin
    • 1
    • 2
  • A. V. Belik
    • 1
    • 2
  1. 1.Chelyabinsk State UniversityChelyabinsk
  2. 2.Institute of Organic Synthesis, Ural BranchRussian Academy of SciencesEkaterinburg

Personalised recommendations