Journal of Structural Chemistry

, Volume 43, Issue 6, pp 1045–1049

Multiconformational Method for Analyzing the Biological Activity of Molecular Structures

  • V. A. Potemkin
  • R. M. Arslambekov
  • E. V. Bartashevich
  • M. A. Grishina
  • A. V. Belik
  • S. Perspicace
  • S. Guccione
Article

Abstract

A multiconformational method for analyzing the biological activity of compounds is proposed that combines conformer search algorithms and a 3D‐QSAR receptor modeling procedure. The method allows one to find high‐activity and low‐activity conformers and determine the receptor shape. The biological activity of a substance is determined as a superposition of the activities of its conformers with allowance for their proportions in the substance. Agreement between calculated and experimental conformations and between calculated and experimental biological activities pIC50%) is demonstrated by the example of agonists of the 5‐HT1A receptor.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    H. Kubinyi, Drug Discov. Today, 2, 538-546 (1997).Google Scholar
  2. 2.
    F. Ooms, Curr. Med. Chem., 7, 141-158 (2000).Google Scholar
  3. 3.
    G. G. Wermuth, “Rational approaches to drug design," in: H. D. Holtje and W. Sippl. (eds.), Proc. of the 13th Europ. Symp. on Quantitative Structure-Activity Relationships, QSAR 2000 (Heinrich-Heine-Universität, Dusseldorf, Germany, August 27-September 1, 2000), Prous Science Publishers, Dusseldorf (2001), pp. 3-20.Google Scholar
  4. 4.
    M. Karelson, Molecular Descriptors in QSAR/QSPR, New York, Wiley and Sons (2000).Google Scholar
  5. 5.
    J. Zupan and J. Gasteiger, Neural Networks for Chemistry and Drug Design, Wiley-VCH, Weinheim, Germany (2000).Google Scholar
  6. 6.
    L. Piela, J. Kostrowicki, and H. A. Scheraga, J. Phys. Chem., 93, 3339-3346 (1989).Google Scholar
  7. 7.
    S. Schelstraete and H. Verschelde, J. Phys. Chem. A, 101, 310-315 (1998).Google Scholar
  8. 8.
    R. V. Pappu, R. K. Hart, and J. W. Ponder, J. Phys. Chem. B, 102, 9725-9742 (1998).Google Scholar
  9. 9.
    I. Andricioaei and J. E. Straub, J. Comput. Chem., 19, 1445-1455 (1998).Google Scholar
  10. 10.
    A. M. Doweyko, J. Med. Chem., 31, 1396-1406 (1988).Google Scholar
  11. 11.
    M. Santagati, H. M. Chen, A. Santagati, et al., in: K. Gundertofte and F. S. Jorgensen (eds.), Molecular Modelling and Prediction of Bioactivity, Kluwer Academic/Plenum Publishers, New York (2000), pp. 433-439.Google Scholar
  12. 12.
    V. A. Potemkin, E. V. Bartashevich, M. A. Grishina, and S. Guccione, “Rational approaches to drug design,” in: H. D. Holtje and W. Sippl (eds.), Proc. of the 13th Europ. Symp. on Quantitative Structure-Activity Relationships, QSAR 2000 (Heinrich-Heine-Universität, Dusseldorf, Germany, August 27-September 1, 2000), Prous Science Publishers, Dusseldorf (2001), pp. 349-353.Google Scholar
  13. 13.
    E. V. Bartashevich, V. A. Potemkin, M. A. Grishina, and A.V. Belik, Zh. Strukt. Khim., 43, No. 6, 1128-1133 (2000).Google Scholar
  14. 14.
    M. Modica, M. Santagati, F. Russo, et al., J. Med. Chem., 40, 574 (1997).Google Scholar
  15. 15.
    S. Guccione, A. M. Doweyko, H. M. Chen, et al., J. Comput-Aided Mol. Design, 14, 647-657 (2000).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • V. A. Potemkin
    • 1
    • 2
    • 3
  • R. M. Arslambekov
    • 1
    • 2
    • 3
  • E. V. Bartashevich
    • 1
    • 2
    • 3
  • M. A. Grishina
    • 1
    • 2
    • 3
  • A. V. Belik
    • 1
    • 2
    • 3
  • S. Perspicace
    • 1
    • 2
    • 3
  • S. Guccione
    • 1
    • 2
    • 3
  1. 1.Chelyabinsk State UniversityChelyabinsk
  2. 2.Institute of Organic Synthesis, Ural BranchRussian Academy of SciencesEkaterinburg
  3. 3.Catania UniversityItaly

Personalised recommendations