, Volume 135, Issue 3, pp 379–399 | Cite as

The Open-Endedness of the Set Concept and the Semantics of Set Theory

  • A. Paseau


Some philosophers have argued that the open-endedness of the set concept has revisionary consequences for the semantics and logic of set theory. I consider (several variants of) an argument for this claim, premissed on the view that quantification in mathematics cannot outrun our conceptual abilities. The argument urges a non-standard semantics for set theory that allegedly sanctions a non-classical logic. I show that the views about quantification the argument relies on turn out to sanction a classical semantics and logic after all. More generally, this article constitutes a case study in whether the need to account for conceptual progress can ever motivate a revision of semantics or logic. I end by expressing skepticism about the prospects of a so-called non-proof-based justification for this kind of revisionism about set theory.


Classical Semantic Revisionary Consequence Conceptual Ability Conceptual Progress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Benacerraf, P. and H. Putnam (eds.): 1983, Philosophy of Mathematics, Cambridge University Press, Cambridge.Google Scholar
  2. Burgess, J. P.: 1984, 'Dummett's Case for Intuitionism', History and Philosophy of Logic 5, 177–194.Google Scholar
  3. Burgess, J. P. and G. Rosen: 1997, A Subject with No Object, Oxford University Press, Oxford.Google Scholar
  4. Chihara, C.: 1998, 'Tarski's Thesis', in M. Schirn (ed.), Philosophy of Mathematics Today, Oxford University Press, Oxford, pp. 157–172.Google Scholar
  5. Clark, P.: 1998, 'Dummett's Argument for the Indefinite Extensibility of Set and Real Number', Grazer Philosophische Studien 55, 51–63.Google Scholar
  6. Craig, E. J.: 1982, 'Meaning, Use and Privacy', Mind 91, 541–564.Google Scholar
  7. Dummett, M.: 1991, Frege: Philosophy of Mathematics, Duckworth, London.Google Scholar
  8. Dummett, M.: 1993, 'What is Mathematics About?', in The Seas of Language, Oxford University Press, Oxford, pp. 429–445.Google Scholar
  9. George, A.: 1993, 'How Not To Refute Realism', Journal of Philosophy 90, 53–72.Google Scholar
  10. Hallett, M.: 1984, Cantorian Set Theory and Limitation of Size, Oxford University Press, Oxford.Google Scholar
  11. Hazen, A.: 1982, 'On a Possible Misinterpretation of Kripke's Semantics for Intuitionistic Logic', Analysis 42, 128–133.Google Scholar
  12. Kitcher, P.: 2001, 'Real Realism: The Galilean Strategy', Philosophical Review 110, 151–197.Google Scholar
  13. Kripke, S.: 1980, Naming and Necessity, Basil Blackwell, Oxford.Google Scholar
  14. Lear, J.: 1977, 'Sets and Semantics', Journal of Philosophy 74, 86–102.Google Scholar
  15. Maddy, P.: 1980, 'Perception and Mathematical Intuition', Philosophical Review 89, 163–196.Google Scholar
  16. Maddy, P.: 1990, Realism in Mathematics, Oxford University Press, Oxford.Google Scholar
  17. Moore, A. W.: 1998, 'More on “The Philosophical Significance of Gödel's Theorem” ', Grazer Philosophische Studien 55, 103–126.Google Scholar
  18. Oliver, A.: 1994, 'Dummett and Frege on the Philosophy of Mathematics', Inquiry 37, 349–392.Google Scholar
  19. Oliver, A.: 1998, 'Hazy Totalities and Indefinitely Extensible Concepts: An Exercise in the Interpretation of Dummett's Philosophy of Mathematics', Grazer Philosophische Studien 55, 25–50.Google Scholar
  20. Parsons, C.: 1983, Mathematics in Philosophy, Cornell University Press, Ithaca.Google Scholar
  21. Paseau, A.: 2001, 'Should the Logic of Set Theory Be Intuitionistic?, Proceedings of the Aristotelian Society 101, 369–378.Google Scholar
  22. Pollard, S.: 1990, Philosophical Introduction to Set Theory, University of Notre Dame Press, Notre Dame.Google Scholar
  23. Potter, M. D.: 1993, 'Iterative Set Theory', Philosophical Quarterly 43, 178–193.Google Scholar
  24. Pozsgay, L.: 1971, 'Liberal Intuitionism as a Basis for Set Theory', Proceedings of Symposia in Pure Mathematics 13, 321–330.Google Scholar
  25. Priest, G.: 1995, Beyond the Limits of Thought, Cambridge University Press, Cambridge.Google Scholar
  26. Putnam, H.: 1975, 'The Meaning of “Meaning” ', in K. Guderson (ed.), Language, Mind & Knowledge, repr. in Putnam's Mind, Language & Reality: Philosophical Papers, vol. 2, pp. 215–271.Google Scholar
  27. Tait, W.: 1998, 'Zermelo's Conception of Set Theory and Reflection Principles', in M. Schirn (ed.), Philosophy of Mathematics Today, Oxford University Press, Oxford, pp. 469–483.Google Scholar
  28. Tharp, L.: 1971, 'A Quasi-Intuitionistic Set Theory', Journal of Symbolic Logic 36, 456–460.Google Scholar
  29. Velleman, D. J.: 1993, 'Constructivism Liberalised', Philosophical Review 102, 59–84.Google Scholar
  30. Weir, A.: 1998, 'Naive Set Theory is Innocent', Mind 107, 763–798.Google Scholar
  31. Zermelo, E.: 1930, “Ñber Grenzzahlen und Mengenbereiche: Neue Untersuchungen über die Grundlagen die Mengenlehre', Fundamenta Mathematicae 16, 29–47, trans. by M. Hallett as 'On Boundary Numbers and Domains of Sets: New Investigations in the Foundations of Set Theory” and repr. in W. Ewald (ed.) (1996), From Kant to Hilbert: Readings in the Foundations of Mathematics, Clarendon Press, Oxford, pp. 1208-1233.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • A. Paseau
    • 1
  1. 1.Trinity CollegeCambridgeU.K. E-mail

Personalised recommendations