Skip to main content
Log in

Competitive Inhibition of p-Aminohippurate Transport by Quinapril in Rabbit Renal Basolateral Membrane Vesicles

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

The mechanism of quinapril's interaction with the organic anion transporter was characterized by studying its effect on the transport of p-aminohippurate (PAH) in rabbit renal basolateral membrane vesicles (BLMV). Cis-inhibition studies demonstrated that quinapril was a specific and potent inhibitor of PAH. The Ki of quinapril was about 20 μM, a value similar to that of probenecid and eight-times lower than the Km value of 165 μM for PAH. Even though quinapril resulted in trans-inhibition of PAH uptake during counterflow studies, kinetic studies revealed that quinapril was a competitive inhibitor of PAH transport. This latter finding suggests that quinapril and PAH share a common binding site on the transporter. Overall, the results indicate that quinapril is a high-affinity inhibitor of the organic anion transporter in renal BLMV, and that drug–drug interactions may occur with other organic anions at the basolateral membrane of proximal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. K. Jackson and J. C. Garrison. Renin and angiotensin. In P. B. Molinoff, R. W. Ruddon, and A. G. Gilman (eds.), The Pharmacologic Basis of Therapeutics, 9th ed., McGraw-Hill, New York, 1996, pp. 733–758.

    Google Scholar 

  2. A. N. Wadworth and R. N. Brogden. Quinapril: A review of its pharmacological properties, and therapeutic efficacy in cardiovascular disorders. Drugs 41:378–399 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. A. R. Kugler, S. C. Olson, and D. E. Smith. Disposition of quinapril and quinaprilat in the isolated perfused rat kidney. J. Pharmacokin. Biopharm. 23:287–305 (1995).

    Article  CAS  Google Scholar 

  4. A. R. Kugler, S. C. Olson, and D. E. Smith. Tubular transport mechanisms of quinapril and quinaprilat in the isolated perfused rat kidney: Effect of organic anions and cations. J. Pharmacokin. Biopharm. 24:349–368 (1996).

    Article  CAS  Google Scholar 

  5. V. Scalera, Y. Huang, B. Hildmann, and H. Murer. A simple isolation method for basal-lateral plasma membranes from rat kidney cortex. Membrane Biochem. 4:49–61 (1981).

    Article  CAS  Google Scholar 

  6. J. M. Goldinger, D. S. Khalsa, and S. K. Hong. Photoaffinity labeling of organic anion transport system in proximal tubule. Am. J. Physiol. 247:C219–C227 (1984).

    Google Scholar 

  7. P. L. Jørgensen and J. C. Skou. Purification and characterization of (Na+-K+)-ATPase in preparations from the outer medulla of rabbit kidney. Biochim. Biophys. Acta 233:366–380 (1971).

    Article  PubMed  Google Scholar 

  8. C. H. Fiske and Y. Subbarow. The colorimetric determination of phosphorous. J. Biol. Chem. 66:375–400 (1925).

    CAS  Google Scholar 

  9. M. M. Bradford. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254 (1976).

    Article  CAS  PubMed  Google Scholar 

  10. U. Hopfer, K. Nelson, J. Perrotto, and K. J. Isselbacher. Glucose transport in isolated brush-border membrane from rat small intestine. J. Biol. Chem. 248:25–32 (1973).

    CAS  PubMed  Google Scholar 

  11. J. Eveloff. p-Aminohippurate transport in basal-lateral membrane vesicles from rabbit renal cortex: Stimulation by pH and sodium gradient. Biochim. Biophys. Acta 897:474–480 (1987).

    Article  CAS  PubMed  Google Scholar 

  12. Y.-C. Cheng and W. H. Prusoff. Relationship between the inhibition constant (Ki) and the concentration which causes 50% inhibition (IC50) of an enzymatic reaction. Biochem. Pharmacol. 22:3099–3108 (1973).

    Article  CAS  PubMed  Google Scholar 

  13. J. L. Kinsella, P. D. Holohan, N. I. Pessah, and C. R. Ross. Isolation of luminal and antiluminal membranes from dog kidney cortex. Biochim. Biophys. Acta 552:468–477 (1979).

    Article  CAS  PubMed  Google Scholar 

  14. R. A. Reynolds, J. Wald, P. D. McNamara, and S. Segal. An improved method for isolation of basolateral membranes from rat kidney. Biochim. Biophys. Acta 601:92–100 (1980).

    Article  CAS  PubMed  Google Scholar 

  15. M. I. Sheikh, U. Kragh-Hansen, K. E. Jørgensen, and H. Røigaard-Petersen. An efficient method for the isolation and separation of basolateral-membrane and luminal-membrane vesicles from rabbit kidney cortex. Biochem. J. 208:377–382 (1982).

    CAS  PubMed Central  PubMed  Google Scholar 

  16. E. F. Boumendil-Podevin and R. A. Podevin. Isolation of basolateral and brush border membranes from the rabbit kidney cortex: Vesicle integrity and membrane sidedness of the basolateral fraction. Biochim. Biophys. Acta 735:86–94 (1983).

    Article  CAS  PubMed  Google Scholar 

  17. Z. Talor, R. M. Gold, W. C. Yang, and J. A. L. Arruda. Anion exchanger is present in both luminal and basolateral renal membranes. Eur. J. Biochem. 164:695–702 (1987).

    Article  CAS  PubMed  Google Scholar 

  18. S. H. Wright and T. M. Wunz. Succinate and citrate transport in renal basolateral and brush border membranes. Am. J. Physiol. 253:F432–F439 (1987).

    CAS  PubMed  Google Scholar 

  19. S. A. Hilden, C. A. Johns, W. B. Guggino, and N. E. Madias. Techniques for isolation of brush-border and basolateral membrane vesicles from dog kidney cortex. Biochim. Biophys. Acta 983:77–81 (1989).

    Article  CAS  PubMed  Google Scholar 

  20. J. B. Pritchard. Coupled transport of p-aminohippurate by rat kidney basolateral membrane vesicles. Am. J. Physiol. 255:F597–F604 (1988).

    CAS  PubMed  Google Scholar 

  21. D. C. Brater, P. P. Sokol, S. D. Hall, and T. D. McKinney. Disposition and dose requirements of drugs in renal insufficiency. In D. W. Seldin and G. Giebisch (eds.), The Kidney: Physiology and Pathophysiology, 2nd ed., Raven, New York, 1992, pp. 3671–3695.

    Google Scholar 

  22. J. B. Pritchard and D. S. Miller. Proximal tubular transport of organic anions and cations. In D. W. Seldin and G. Giebisch (eds.), The Kidney: Physiology and Pathophysiology, 2nd ed., Raven, New York, 1992, pp. 2921–2945.

    Google Scholar 

  23. I. A. M. de Lannoy, R. Nespeca, and K. S. Pang. Renal handling of enalapril and enalaprilat: Studies in the isolated red blood cell-perfused rat kidney. J. Pharmacol. Exp. Ther. 251:1211–1222 (1989).

    CAS  PubMed  Google Scholar 

  24. K. J. Ullrich, G. Rumrich, and S. Klöss. Contraluminal organic anion and cation transport in the proximal renal tubule: V. Interaction with sulfamoyl-and phenoxy diuretics, and with β-lactam antibiotics. Kidney Int. 36:78–88 (1989).

    Article  CAS  PubMed  Google Scholar 

  25. C. Schmitt and G. Burckhardt. p-Aminohippurate/2-oxoglutarate exchange in bovine renal brush-border and basolateral membrane vesicles. Pflügers Arch. 423:280–290 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. S. Shpun, K. K. Evans, and W. H. Dantzler. Interaction of α-KG with basolateral organic anion transporter in isolated rabbit renal S3 proximal tubules. Am. J. Physiol. 268:F1109–F1116 (1995).

    CAS  PubMed  Google Scholar 

  27. D. A. Griffiths, S. D. Hall, and P. P. Sokol. Interaction of 3′-azido—3′-deoxythymidine with organic ion transport in rat renal basolateral membrane vesicles. J. Pharmacol. Exp. Ther. 257:149–155 (1991).

    CAS  PubMed  Google Scholar 

  28. W. H. Dantzler, K. K. Evans, and S. H. Wright. Kinetics of interactions of para-aminohippurate, probenecid, cysteine conjugates and N-acetyl cysteine conjugates with basolateral organic anion transporter in isolated rabbit proximal renal tubules. J. Pharmacol. Exp. Ther. 272:663–672 (1995).

    CAS  PubMed  Google Scholar 

  29. F. G. M. Russel and W. G. Vermeulen. Effect of substituted benzoylglycines (hippurates) and phenylacetylglycines on p-aminohippurate transport in dog renal membrane vesicles. Pharm. Res. 11:1829–1833 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. P. D. Holohan and C. R. Ross. Mechanisms of organic cation transport in kidney plasma membrane vesicles: 1. Countertransport studies. J. Pharmacol. Exp. Ther. 215:191–197 (1980).

    CAS  PubMed  Google Scholar 

  31. P. P. Sokol, P. D. Holohan, and C. R. Ross. The neurotoxins 1-methyl-4-phenylpyridinium and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine are substrates for the organic cation transporter in renal brush border membrane vesicles. J. Pharmacol. Exp. Ther. 242:152–157 (1987).

    CAS  PubMed  Google Scholar 

  32. E. J. Begg, R. A. Robson, R. R. Bailey, K. L. Lynn, G. J. Frank, and S. C. Olson. The pharmacokinetics and pharmacodynamics of quinapril and quinaprilat in renal impairment. Br. J. Clin. Pharmacol. 30:213–220 (1990).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. P. P. Sokol and T. D. McKinney. Mechanism of organic cation transport in rabbit renal basolateral membrane vesicles. Am. J. Physiol. 258:F1599–F1607 (1990).

    CAS  PubMed  Google Scholar 

  34. K. D. A. Lazaruk and S. H. Wright. MPP+ is transported by the TEA+-H+ exchanger of renal brush-border membrane vesicles. Am. J. Physiol. 258:F597–F605 (1990).

    CAS  PubMed  Google Scholar 

  35. A. Jacolot, M. Tod, and O. Petitjean. Pharmacokinetic interaction between cefdinir and two angiotensin-converting enzyme inhibitors in rats. Antimicrob. Agents Chemother. 40:979–982 (1996).

    CAS  PubMed Central  PubMed  Google Scholar 

  36. J. B. Kostis, J. J. Raia, Jr., E. A. DeFelice, J. A. Barone, and R. G. Deeter. Comparative clinical pharmacology of ACE inhibitors. In J. B. Kostis and E. A. DeFelice (eds.), Angiotensin Converting Enzyme Inhibitors, Alan R Liss, New York, 1987, pp. 19–54.

    Google Scholar 

  37. S. M. Singhvi, K. L. Duchin, D. A. Willard, D. N. KcKinstry, and B. H. Migdalof. Renal handling of captopril: Effect of probenecid. Clin. Pharmacol. Ther. 32:182–189 (1982).

    Article  CAS  Google Scholar 

  38. F. H. Noormohamed, W. R. McNabb, and A. F. Lant. Pharmacokinetic and pharmacodynamic actions of enalapril in humans: Effect of probenecid pretreatment. J. Pharmacol. Exp. Ther. 253:362–368 (1990).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akarawut, W., Smith, D.E. Competitive Inhibition of p-Aminohippurate Transport by Quinapril in Rabbit Renal Basolateral Membrane Vesicles. J Pharmacokinet Pharmacodyn 26, 269–287 (1998). https://doi.org/10.1023/A:1023281325479

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023281325479

Navigation