Advertisement

Journal of Pharmacokinetics and Biopharmaceutics

, Volume 26, Issue 1, pp 103–123 | Cite as

A Use of Monte Carlo Integration for Population Pharmacokinetics with Multivariate Population Distribution

  • Akifumi Yafune
  • Masato Takebe
  • Hiroyasu Ogata
Article

Abstract

This paper describes a use of Monte Carlo integration for population pharmacokinetics with multivariate population distribution. In the proposed approach, a multivariate lognormal distribution is assumed for a population distribution of pharmacokinetic (PK) parameters. The maximum likelihood method is employed to estimate the population means, variances, and correlation coefficients of the multivariate lognormal distribution. Instead of a first-order Taylor series approximation to a nonlinear PK model, the proposed approach employs a Monte Carlo integration for the multiple integral in maximizing the log likelihood function. Observations below the lower limit of detection, which are usually included in Phase 1 PK data, are also incorporated into the analysis. Applications are given to a simulated data set and an actual Phase 1 trial to show how the proposed approach works in practice.

Monte Carlo integration multivariate population distribution numerical approach phase 1 trial 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    J. Steimer, A. Mallet, J. Golmard, and J. Boisvieux. Alternative approaches to estimation of population pharmacokinetic parameters: comparison with the nonlinear mixed-effect model. Drug Metab. Rev. 15:265–292 (1984).PubMedCrossRefGoogle Scholar
  2. 2.
    A. Racine-Poon. A Bayesian approach to nonlinear random effects models. Biometrics 41:1015–1023 (1985).PubMedCrossRefGoogle Scholar
  3. 3.
    R. Racine, A. P. Grieve, and H. Flühler. Bayesian methods in practice: experiences in the pharmaceutical industry. Appl. Statist. 35:93–150 (1986).CrossRefGoogle Scholar
  4. 4.
    L. B. Sheiner, B. Rosenberg, and V. V. Marathe. Estimation of population characteristics of pharmacokinetic parameters from routine clinical data. J. Pharmacokin. Biopharm. 5:445–479 (1977).CrossRefGoogle Scholar
  5. 5.
    M. J. Lindstrom and D. M. Bates. Nonlinear mixed effects models for repeated measures data. Biometrics 46:673–687 (1990).PubMedCrossRefGoogle Scholar
  6. 6.
    E. F. Vonesh and R. L. Carter. Mixed-effects nonlinear regression for unbalanced repeated measures. Biometrics 48:1–17 (1992).PubMedCrossRefGoogle Scholar
  7. 7.
    M. Davidian and D. M. Giltinan. Nonlinear Models for Repeated Measurement Data, Chapman & Hall, London, 1995.Google Scholar
  8. 8.
    A. Yafune and M. Ishiguro. An exact application of maximum likelihood method to pharmacokinetic analysis. Japanese J. Biometrics 13:5–14 (1992).CrossRefGoogle Scholar
  9. 9.
    M. Davidian and A. R. Gallant. Smooth nonparametric maximum likelihood estimation for population pharmacokinetics, with application to quinidine. J. Pharmacokin. Biopharm. 20:529–556 (1992).CrossRefGoogle Scholar
  10. 10.
    M. Davidian and A. R. Gallant. The nonlinear mixed effects model with a smooth random effects density. Biometrika 80:475–488 (1993).CrossRefGoogle Scholar
  11. 11.
    J. C. Pinheiro and D. M. Bates. Approximations to the log-likelihood function in the nonlinear mixed-effects model. J. Comput. Graph. Statist. 4:12–35 (1995).Google Scholar
  12. 12.
    P. J. Davis and P. Rabinowitz. Methods of Numerical Integration, Academic Press, Boston, 1984.Google Scholar
  13. 13.
    N. Flournoy and R. K. Tsutakawa (eds.). Statistical Multiple Integration, American Mathematical Society, Providence, 1991.Google Scholar
  14. 14.
    S. L. Beal and L. B. Sheiner. Heteroscedastic nonlinear regression. Technometrics 30:327–338 (1988).CrossRefGoogle Scholar
  15. 15.
    J. Wakefield and A. Racine-Poon. An application of Bayesian population pharmacokinetic/pharmacodynamic models to dose recommendation. Statist. Med. 14:971–986 (1995).CrossRefGoogle Scholar
  16. 16.
    N. L. Johnson and S. Kotz. Distributions in Statistics, Continuous Univariate Distributions-1, Wiley, New York, 1970, pp. 53–59.Google Scholar
  17. 17.
    J. W. Mandema, D. Verotta, and L. B. Sheiner. Building population pharmacokinetic-pharmacodynamic models. In D. Z. D'Argenio (ed.), Advanced Methods of Pharmacokinetic and Pharmacodynamic Systems Analysis, Vol. 2, Plenum Press, New York, 1995, pp. 69–86.Google Scholar
  18. 18.
    L. Devroye. Non-Uniform Random Variate Generation, Springer-Verlag, New York, 1986, pp. 235–236.CrossRefGoogle Scholar
  19. 19.
    W. C. Davidon. Variance algorithm for minimization. Comp. J. 10:406–410 (1968).CrossRefGoogle Scholar
  20. 20.
    M. Ishiguro and H. Akaike. DALL: Davidon's algorithm for log likelihood maximization—a FORTRAN subroutine for statistical model builders. Computer Science Monographs, No. 25, The Institute of Statistical Mathematics, Tokyo (1989).Google Scholar
  21. 21.
    H. Akaike. Information theory and an extension of the maximum likelihood principle, in B. N. Petrov and F. Csaki (eds.), Second International Symposium on Information Theory, Akademiai Kiado, Budapest, 1973, pp. 267–281. (Reproduced in S. Kotz and N. L. Johnson, eds., Breakthroughs in Statistics, Vol. 1, Springer Verlag, New York, 1992.)Google Scholar
  22. 22.
    Y. Sakamoto, M. Ishiguro, and G. Kitagawa. Akaike Information Criterion Statistics, Reidel, Dordrecht, 1986.Google Scholar
  23. 23.
    D. M. Bates and D. G. Watts. Nonlinear Regression Analysis and its Applications, Wiley, New York, 1988, pp. 200–216.CrossRefGoogle Scholar
  24. 24.
    B. Efron. Bootstrap methods: Another look at the jackknife. Ann. Statist. 7:1–26 (1979).CrossRefGoogle Scholar
  25. 25.
    B. Efron and R. J. Tibshirani. An Introduction to the Bootstrap, Chapman & Hall, New York, 1993.CrossRefGoogle Scholar
  26. 26.
    R. J. Carroll and D. Ruppert. Power transformations when fitting theoretical models to data. J. Am. Statist. Assoc. 79:321–328 (1984).CrossRefGoogle Scholar
  27. 27.
    R. J. Carroll and D. Ruppert. Transformation and Weighting in Regression, Chapman & Hall, New York, 1988.CrossRefGoogle Scholar
  28. 28.
    J. W. Mandema, D. Verotta, and L. B. Sheiner. Building population pharmacokinetic-pharmacodynamic models. I. Models for covariate effects. J. Pharmacokin. Biopharm. 20:511–528 (1992).CrossRefGoogle Scholar
  29. 29.
    R. Bruno, N. Vivier, J. C. Vergniol, S. L. D. Phillips, G. Montay, and L. B. Sheiner. A population pharmacokinetic model for docetaxel (Taxotere): Model building and validation. J. Pharmacokin. Biopharm. 24:153–172 (1996).CrossRefGoogle Scholar
  30. 30.
    A. Mallet. A maximum likelihood estimation method for random coefficient regression models. Biometrika 73:645–656 (1986).CrossRefGoogle Scholar
  31. 31.
    A. Mallet, F. Mentré, J. Steimer, and F. Lokiec. Nonparametric maximum likelihood estimation for population pharmacokinetics, with application to cyclosporine. J. Pharmacokin. Biopharm. 16:311–327 (1988).CrossRefGoogle Scholar
  32. 32.
    E. I. Ette and T. M. Ludden. Population pharmacokinetic modeling: The importance of informative graphics. Pharm. Res. 12:1845–1855 (1995).PubMedCrossRefGoogle Scholar
  33. 33.
    K. E. Fattinger, L. B. Sheiner, and D. Verotta. A new method to explore the distribution of interindividual random effects in non-linear mixed effects models. Biometrics 51:1236–1251 (1995).PubMedCrossRefGoogle Scholar
  34. 34.
    E. I. Ette. Stability and performance of a population pharmacokinetic model. J. Clin. Pharmacol. 37:486–495 (1997).PubMedCrossRefGoogle Scholar
  35. 35.
    A. Shapiro. Simulation-based optimization—convergence analysis and statistical inference. Commun. Statist. Stochastic Models 12:425–454 (1996).CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Akifumi Yafune
    • 1
    • 2
  • Masato Takebe
    • 1
  • Hiroyasu Ogata
    • 3
  1. 1.Department of Clinical PharmacologyBio-Iatric Center, the Kitasato InstituteTokyoJapan
  2. 2.Department of Pharmacoepidemiology, Faculty of MedicineUniversity of TokyoTokyoJapan
  3. 3.Department of PharmaceuticsMeiji College of PharmacyTokyoJapan

Personalised recommendations