Skip to main content
Log in

Horizontal variation of biomass and C:N:P ratios of benthic algae in lakes

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The horizontal variation of chlorophyll a (chl a) and C:N:P (carbon:nitrogen:phosphorus) ratio was estimated for benthic algal communities attached to living substrates (mussels and macrophytes) and to rocks and stones in three lakes of different trophy. Samples were taken in a nested hierarchical design with replicates separated by several cm, dm, 10 m, and km. The observed horizontal variation of chl a, C:N, and C:P ratios did not differ for horizontal scales, substrates, or lakes. Although the investigated lakes were quite unlike regarding nutrient status, light regime, or morphology, the patchiness was similar in all lakes. Moreover, patchiness was also similar on stones, macrophytes and mussels, although those substrates differed in longevity and surface structure. Similar patchiness regardless of scale, substrate, or sampled lake, implies the possibility of using an optimal sampling design calculated for one lake and substrate also in other lakes and on other substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Auer, M. T., R. P. Canale, H. C. Grundler & Y. Matsuoka, 1982. Ecological studies and mathematical modeling of Cladophora in Lake Huron: 1. Program description and field monitoring of growth dynamics. J. Great Lakes Res. 8: 73–83.

    Google Scholar 

  • Barton, D. R. & J. C. H. Carter, 1982. Shallow-water epilithic invertebrate communities of eastern Georgian Bay, Ontario, in relation to exposure to wave action. Can. J. Zool. 60: 984–993.

    Google Scholar 

  • Birch, P. B., D. M. Gordon & A. J. McComb, 1981. Nitrogen and phosphorus nutrition of Cladophora in the Peel-Harvey estuarine system, Western Australia. Bot. mar. 24: 381–387.

    Google Scholar 

  • Björnsàter, B. R. & P. A. Wheeler, 1990. Effect of nitrogen and phosphorus supply on growth and tissue composition of Ulva fenestrata and Enteromorpha intestinalis (Ulvales, Chlorophyta). J. Phycol. 26: 603–611.

    Google Scholar 

  • Blanchard, G. F., 1990. Overlapping microscale dispersion patterns of meiofauna and microphytobenthos. Mar. Ecol. Prog. Ser. 68: 101–111.

    Google Scholar 

  • Burkovskii, I. V., D. E. Aksenov & A. I. Azovskii, 1996. The mesoscale spatial structure of the community of marine psammophilous ciliates. Oceanologia 36: 553–557.

    Google Scholar 

  • Cattaneo, A., 1990. The effect of fetch on periphyton spatial variation. Hydrobiologia 206: 1–10.

    Google Scholar 

  • Chopin, T., P. A. Marquis & E. P. Belyea, 1996. Seasonal dynamics of phosphorus and nitrogen contents in the brown alga Ascophyllum nodosum (L.) Le Jolis, and its associated species Polysiphonia lanosa (L.) Tandy and Pilayella littoralis (L.) Kjellman, from the Bay of Fundy, Canada. Bot. mar. 39.

  • Cyr, H., 1998. How does the vertical distribution of chlorophyll peak in littoral sediments of small lakes? Freshwater Biol. 39: 25–40.

    Google Scholar 

  • Downing, J. A. & L. C. Rath, 1988. Spatial patchiness in the lacustrine sedimentary environment. Limnol. Oceanogr. 33: 447–458.

    Google Scholar 

  • Duarte, C.M., 1990. Seagrass nutrient content. Mar. Ecol. Prog. Ser. 67: 201–207.

    Google Scholar 

  • Falkowski, P. G. & J. LaRoche, 1991. Acclimation to spectral irradiance in algae. J. Phycol. 27: 8–14.

    Google Scholar 

  • Fitzgerald, G. P., 1972. Bioassay analysis of nutrient availability. In Allen, H. E. & J. R. Kramer (eds), Nutrients in Natural Waters. John Wiley & Sons, New York: 147–169.

    Google Scholar 

  • Goldman, J. C., J. J. McCarthy & D. G. Peavey, 1979. Growth rate influence on the chemical composition of phytoplankton in oceanic waters. Nature 279: 210–215.

    Google Scholar 

  • Gordon, D. M., P. B. Birch & A. J. McComb, 1981. Effects of inorganic phosphorus and nitrogen on the growth of an estuarine Cladophora in culture. Bot. Mar. 24: 93–106.

    Google Scholar 

  • Hagerthey, S. E. & W. C. Kerfoot, 1998. Groundwater flow in-fluences the biomass and nutrient ratios of epibenthic algae in a north temperate seepage lake. Limnol. Oceanogr. 43: 1227–1242.

    Google Scholar 

  • Healey, F. P., 1978. Physiological indicators of nutrient deficiency in algae. Commun. int. Assoc. theor. appl. Limnol. 21: 34–41.

    Google Scholar 

  • Hecky, R. E., P. Campbell & L. L. Hendzel, 1993. The stoichiometry of carbon, nitrogen, and phosphorus in particulate matter of lakes and oceans. Limnol. Oceanogr. 38: 709–724.

    Google Scholar 

  • Herodek, S., L. Lackó & Á. Virág, 1988. Lake Balaton–research and management, ILFC: 110 pp.

  • Jones, J. G., 1978. Spatial variation in epilithic algae in a stony stream (Wilfin Beck) with particular reference to Cocconeis placentula. Freshwat. Biol. 8: 539–546.

    Google Scholar 

  • Kahlert, M., 1998. C:N:P ratios of freshwater benthic algae. Arch. Hydrobiol. (Suppl.) (Advanc. Limnol.) 51: 105–114.

    Google Scholar 

  • Kahlert, M., A. T. Hasselrot, H. Hillebrand & K. Pettersson, 2002. Spatial and temporal variation in the biomass and nutrient status of epilithic algae in Lake Erken, Sweden. Freshwat. Biol. 47: 1–24.

    Google Scholar 

  • Kahlert, M. & K. Pettersson, 2002. The impact of substrate and lake trophy on the biomass and nutrient status of benthic algae. Hydrobiologia 489: 161–169.

    Google Scholar 

  • Loeb, S. L., 1981. An in situ method for measuring the primary productivity and standing crop of the epilithic periphyton community in lentic systems. Limnol. Oceanogr. 26: 394–399.

    Google Scholar 

  • Lohman, K. & J. C. Priscu, 1992. Physiological indicators of nutrient deficiency in Cladophora (Chlorophyta) in the Clark Fork of the Columbia River, Montana. J. Phycol. 28: 443–448.

    Google Scholar 

  • Lorenz, R. C. & C. E. Herdendorf, 1982. Growth dynamics of Cladophora glomerata in western Lake Erie in relation to some environmental factors. J. Great Lakes Res. 8: 42–53.

    Google Scholar 

  • Makarevich, T. A., T. V. Zhukova & A. P. Ostapenya, 1993. Chemical composition and energy value of periphyton in amesotrophic lake. Hydrobiol. J. 29: 34–38.

    Google Scholar 

  • Menzel, D. H. & N. Corwin, 1965. The measurement of total phosphorus in seawater based on the liberation of organically bound fractions by persulphate oxidation. Limnol. Oceanogr. 10: 280–282.

    Google Scholar 

  • Morin, A. & A. Cattaneo, 1992. Factors affecting sampling variability of freshwater periphyton and the power of periphyton studies. Can. J. Fish. aquat. Sci. 49: 1695–1703.

    Google Scholar 

  • Nalewajko, C. & D. R. S. Lean, 1980. Phosphorus. In Morris, I. (ed.), The Physiological Ecology of Phytoplankton. Blackwell Scientific Publications, Oxford: 235–257.

    Google Scholar 

  • Peterson, C. G., 1996. Response of benthic algal communities to natural physical disturbance. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, San Diego: 375–403.

    Google Scholar 

  • Pettersson, K., R. Bell, V. Istvanovics, J. Padisak & D. Pierson, 1993. Phosphorus status of size-fractionated setson in lake Erken. Proc. int. assoc. theor. appl. Limnol. 25: 137–143.

    Google Scholar 

  • Rhee, G., 1978. Effects of N:P atomic ratios and nitrate limitation on algal growth, cell composition, and nitrate uptake. Limnol. Oceanogr. 23: 10–25.

    Google Scholar 

  • Riber, H. H., J. P. Sorensen & A. Kowalczewski, 1983. Exchange of phosphorus between water, macrophytes and epiphytic periphyton in the littoral of Mikolajskie Lake, Poland. In Wetzel, R. G. (ed.), Periphyton of Freshwater Ecosystems. Dr W. Junk Publishers, The Hague: 326–243.

    Google Scholar 

  • Saburova, M. A., I. G. Polikarpov & I. V. Burkovsky, 1995. Spatial structure of an intertidal sandflat microphytobenthic community as related to different spatial scales. Mar. Ecol. Prog. Ser. 129: 229–239.

    Google Scholar 

  • Sokal, R. R. & F. J. Rohlf, 1995. Biometry: The Principles and Practise of Statistics in Biological Research, W.H. Freeman & Co., New York: 887 pp.

    Google Scholar 

  • Steinman, A. D., 1996. Effects of grazers on freshwater benthic Algae. In Stevenson,a6 R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, San Diego: 341–374.

    Google Scholar 

  • Welschmeyer, N. A., 1994. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol. Oceanogr. 39: 1985–1992.

    Google Scholar 

  • Weyhenmeyer, G., 1999. Lake Erken. Scripta Limnologica Upsaliensis B:16: 1–51.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kahlert, M. Horizontal variation of biomass and C:N:P ratios of benthic algae in lakes. Hydrobiologia 489, 171–177 (2002). https://doi.org/10.1023/A:1023232804647

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023232804647

Navigation