Skip to main content

Advertisement

Log in

Antigen Selectivity Characteristic of Polyclonal Antibodies Against Omega-Conotoxin GVIA and N-Type Voltage-Dependent Calcium Channels

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The antibodies against omega-conotoxin GVIA (ω-CTX GVIA; N-type voltage-dependent calcium channel [VDCC] blocker) and B1Nt (N-terminal segment [residues 1–13] of BI α1 subunits of VDCCs) were prepared, and the selectivity for each antigen ω-CTX GVIA and B1Nt was investigated. For the antigen selectivity of anti–ω-CTX GVIA antibody against ω-CTX GVIA, ELISA, and immunoprecipitation were used. The reactions for ELISA and immunoprecipitation were observed except when antibody IgG purified by Protein A–Sepharose CL-4B from nonimmunized serum (purified NI-Ab) was used. The specific reactions were inhibited by 10 nM ω-CTX GVIA, but not by ω-CTX SVIB (N-type VDCC blocker), ω-CTX MVIIC (N- and P-type VDCC blocker), or ω-Aga IVA (P-type VDCC blocker). For the antigen selectivity of the anti-B1Nt antibody, analyses by ELISA, immunoprecipitation, and Western blotting were conducted. The reactions were observed except when NI-Ab was used. The ELISA and immunoprecipitation reactions were inhibited by the antigen peptide B1Nt, and the IC50 values were about 1.2 × 1028 and 1.3 × 1028 M, respectively. The bands of 210 and 190 kD by Western blotting of crude membranes from chick brain were also inhibited by 1 μM B1Nt. These results suggest that the antibodies prepared against ω-CTX GVIA and B1Nt in this work have high selectivity for their antigen. Therefore we assume that the antibodies against ω-CTX GVIA and B1Nt are useful tools for the analyses of the function and distribution of N-type VDCCs. The anti ω-CTX GVIA antibody must also be useful for the radioimmunoassay of ω-CTX GVIA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Westenbroek, R. E., Hell, J. W., Warner, C., Dubel, S. J., Snutch, T. P., and Catterall, W. A. 1992. Biochemical properties and subcellular distribution of an N-type calcium channel alpha 1 subunit. Neuron 9:1099–1115.

    Google Scholar 

  2. Olivera, B. M., Miljanich, G., Ramachandran, J., and Adams, M. E. 1994. Calcium channel diversity and neurotransmitter release: The ω-conotoxines and ω-agatoxins. Ann. Rev. Biochem. 63:823–867.

    Google Scholar 

  3. Olivera, B. M., McIntosh, J. M., Cruz, L. J., Luque, F. A., and Gray, W. R. 1984. Purification and sequence of a presynaptic peptide toxin from Conus geographus venom. Biochemistry 23:5087–5090.

    Google Scholar 

  4. Kerr, L. M. and Yoshikami, D. 1984. A venom peptide with a novel presynaptic blocking action. Nature 308:282–284.

    Google Scholar 

  5. McCleskey, E. W., Fox, A. P., Feldman, D., and Tsien, R. W. 1986. Different types of calcium channels. J. Exp. Biol. 124:177–190.

    Google Scholar 

  6. Kasai, H., Aosaki, T., and Fukuda, J. 1987. Presynaptic Ca-antagonist ω-conotoxin irreversibly blocks N-type Ca-channels in chick sensory neurons. Neurosci. Res. 4:228–235.

    Google Scholar 

  7. Koyano, K., Abe, T., Nishiuti, Y., and Sakakibara, S. 1987. Effects of synthetic ω-conotoxin on synaptic transmission. Eur. J. Pharmacol. 135:337–343.

    Google Scholar 

  8. McCleskey, E. W., Fox, A. P., Feldman, D. H., Cruz, L. J., Olivera, B. M., Tsien, R. W., and Yoshikami, D. 1987. ω-Conotoxin: Direct and persistent blockade of specific types of calcium channels in neurones but not muscle. Proc. Natl. Acad. Sci. USA 84:4327–4331.

    Google Scholar 

  9. Oyama, Y., Tsuda, Y., Sakakibara, S., and Akaike, N. 1987. Synthetic ω-conotoxin: A potent calcium channel blocking neurotoxin. Brain Res. 424:58–64.

    Google Scholar 

  10. Hess, P. 1990. Calcium channels in vertebrate cells. Annu. Rev. Neurosci. 13:337–356.

    Google Scholar 

  11. Tombaccini, D., Adeyemo, O. M., Pollard, H. B., and Feuerstein, G. 1990. Monoclonal antibodies against the presynaptic calcium channel antagonist ω-CTX GVIA from cone snail poison. FEBS Lett. 261:71–75.

    Google Scholar 

  12. Abe, T., Koyano, K., Saitsu, H., Nishiuchi, Y., and Sakakibara, S. 1986. Binding of ω-conotoxin to receptor sites associated with the voltage-sensitive calcium channel. Neurosci. Lett. 71:203–208.

    Google Scholar 

  13. Cruz, L. J. and Olivera, B. M. 1986. Calcium channel antagonists: ω-Conotoxin defines a new high affinity site. J. Biol. Chem. 261:6230–6233.

    Google Scholar 

  14. Knaus, H. G., Striessnig, J., Koza, A., and Glossmann, H. 1987. Neurotoxic aminoglycoside antibiotics are potent inhibitors of [125I]-omega-conotoxin GVIA binding to guinea-pig cerebral cortex membranes. Naunyn Schmiedebergs Arch. Pharmacol. 336:583–586.

    Google Scholar 

  15. Feigenbaum, P., Garcia, M. L., and Kaczorowski, G. J. 1988. Evidence for distinct sites coupled to high-affinity ω-conotoxin receptors in rat brain synaptic plasma membrane vesicles. Biochem. Biophys. Res. Commun. 154:298–305.

    Google Scholar 

  16. Ichida, S., Wada, T., Sekiguchi, M., Kishino, H., Okazaki, Y., and Akimoto, T. 1993. Characteristics of specific 125I-ω-conotoxin GVIA binding in rat whole brain. Neurochem. Res. 18:1137–1144.

    Google Scholar 

  17. Ichida, S., Wada, T., Akimoto, T., Kasamatsu, Y., Tahara, M., and Hashimoto, K. 1995. Characteristics of specific 125I-ω-conotoxin GVIA binding and 125I-ω-conotoxin GVIA labeling using bifunctional cross-linkers in crude membranes from chick whole brain. Biochim. Biophys. Acta 1233:57–67.

    Google Scholar 

  18. Ichida, S., Wada, T., Akimoto, T., Kasamatsu, Y., Tahara, M., and Hashimoto, K. 1995. Characteristics of [125I]-ω-conotoxin labeling using bifunctional cross-linker DSP in crude membranes from chick brain. Neurochem. Res. 20:467–473.

    Google Scholar 

  19. Leveque, C., Far, O. E., Martin-Moutot, N., Sato, K., Kato, R., Takahashi, M., and Seagar, M. J. 1994. Purification of the N-type calcium channel associated with syntaxin and synaptotagmin. J. Biol. Chem. 269:6306–6312.

    Google Scholar 

  20. Mori, Y., Friedrich, T., Kim, M. S., Mikami, A., Nakai, J., Ruth, P., Bosse, E., Hofmann, F., Flockerzi, V., Furuichi, T., Mikoshiba, K., Imoto, K., Tanabe, T., and Numa, S. 1991. Primary structure and functional expression from complementary DNA of a brain calcium channel. Nature 350:389–402.

    Google Scholar 

  21. Ellinor, P. T., Zhang, J. F., Horne, W. A., and Tsien, R. W. 1994. Structural determinants of the blockade of N-type calcium channels by a peptide neurotoxin. Nature 372:272–275.

    Google Scholar 

  22. Saccomano, N. A. and Ahlijanian, M. K. 1994. Ca2+ channel toxins: Tools to study channel structure and function. Drug Develop. Res. 33:319–343.

    Google Scholar 

  23. Sakurai, T., Hell, J. W., Woppmann, A., Miljanich, G. P., and Catterall, W. A. 1995. Immunochemical identification and differential phosphorylation of alternatively spliced forms of the α1A subunit of brain calcium channels. J. Biol. Chem. 270:21234–21242.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ichida, S., Abe, J., Sugimoto, W. et al. Antigen Selectivity Characteristic of Polyclonal Antibodies Against Omega-Conotoxin GVIA and N-Type Voltage-Dependent Calcium Channels. Neurochem Res 28, 789–796 (2003). https://doi.org/10.1023/A:1023208103438

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023208103438

Navigation