Skip to main content
Log in

Tumor-Targeted Gene Transfer with DNA Polyplexes

  • Published:
Somatic Cell and Molecular Genetics

Abstract

Systemic gene delivery systems are needed for therapeutic applications; in some situations, target cells might be spread throughout the organism, as in the case of cancer metastases, which can be reached only via the systemic route. Within the class of nonviral vectors, polymer-based transfection particles named DNA polyplexes and lipid-based systems named DNA lipoplexes are being developed for this purpose. For systemic circulation, masking the surface charge of DNA complexes has to be accomplished to avoid interactions with plasma components, erythrocytes, and the reticuloendothelial system. Among other vector formulations, polyplexes based on polyethylenimine (PEI), shielded with polyethylene glycol (PEG), and linked to the receptor binding ligands transferrin (Tf) or epidermal growth factor (EGF) have been developed. Complexes were found to mediate efficient gene transfer into tumor cell lines in a receptor-dependent and cell-cycle-dependent manner. Systemic administration of surface-shielded Tf-PEI polyplexes into the tail vein of mice resulted in preferential gene delivery into distantly growing subcutaneous tumors. In contrast, application of positively charged PEI polyplexes directed gene transfer primarily to the lung.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Lollo CP, Banaszczyk MG, Chiou HC. Curr Opin Mol Ther 2000; 2:136–142.

    Google Scholar 

  2. Wang R. Science 1998; 282:476–480.

    Google Scholar 

  3. Mathiesen I. Gene Ther 1999; 6:508–514.

    Google Scholar 

  4. Widera G. J Immunol 2000; 164:4635–4640.

    Google Scholar 

  5. Yang N-S, Burkholder J, Roberts B et al. Proc Natl Acad Sci USA 1990; 87:9568–9572.

    Google Scholar 

  6. Kuriyama S. Gene Ther 2000; 7:1132–1136.

    Google Scholar 

  7. Felgner PL. Hum Gene Ther 1997; 8:511–512.

    Google Scholar 

  8. Hong K, Zheng W, Baker A et al. FEBS Letters 1996; 400:233–237.

    Google Scholar 

  9. Li S, Huang L. Gene Ther 1997; 4:891–900.

    Google Scholar 

  10. Liu F, Qi H, Huang L, Liu D. Gene Ther 1997; 4:517–523.

    Google Scholar 

  11. Liu Y. Nat Biotechnol 1997; 15:167–173.

    Google Scholar 

  12. Templeton, N.S., et al. (1997). Nat. Biotechnol. 15:647–652.

    Google Scholar 

  13. Xu L. Hum Gene Ther 1999; 10:2941–2952.

    Google Scholar 

  14. Monck MA. J Drug Target 2000; 7:439–452.

    Google Scholar 

  15. Wu GY, Wu CH. J Biol Chem 1988; 263:14621–14624.

    Google Scholar 

  16. Perales JC, Ferkol T, Beegen, H et al. Proc Natl Acad Sci USA 1994; 91:4086–4090.

    Google Scholar 

  17. Goula D. Gene Ther 1998; 5:1291–1295.

    Google Scholar 

  18. Goula D. Gene Ther 2000; 7:499–504.

    Google Scholar 

  19. Zou SM, Erbacher P, Remy JS et al. J Gene Med 2000; 2:128–134.

    Google Scholar 

  20. Ogris M, Brunner S, Schüller S et al. Gene Ther 1999; 6:595–605.

    Google Scholar 

  21. Kircheis R. J Gene Med 1999; 1:111–120.

    Google Scholar 

  22. Kircheis R et al. Gene Therin press.

  23. Dash PR, Read ML, Barrett LB et al. Gene Ther 1999; 6:643–650.

    Google Scholar 

  24. Dash PR. J Biol Chem 2000; 275:3793–3802.

    Google Scholar 

  25. Finsinger D, Remy JS, Erbacher P et al. Gene Ther 2000; 7:1183–1192.

    Google Scholar 

  26. Nguyen HK. Gene Ther 2000; 7:126–138.

    Google Scholar 

  27. Zaitsev SV. Gene Ther 1997; 4:586–592.

    Google Scholar 

  28. Wagner E, Cotten M, Foisner R et al. Proc Natl Acad Sci USA 1991; 88:4255–4259.

    Google Scholar 

  29. Zauner W, Ogris M, Wagner E. Adv Drug Del Rev 1998; 30:97–113.

    Google Scholar 

  30. Emi N, Kidoaki S, Yoshikawa K et al. Biochem Biophys Res Commun 1997; 231:421–424.

    Google Scholar 

  31. Dong Y, Skoultchi AI, Pollard JW. Nucleic Acids Res 1993; 21:771–772.

    Google Scholar 

  32. Lopata MA, Cleveland DW, Sollner WB. Nucleic Acids Res 1984; 12:5707–5717.

    Google Scholar 

  33. Erbacher P, Zou S, Bettinger T et al. Pharm Res 1998; 15:1332–1339.

    Google Scholar 

  34. Kabanov AV. Bioconjug Chem 1993; 4:448–454.

    Google Scholar 

  35. van de Weteringen P, Cherng JY, Talsma H et al. J Control Rel 1998; 53:145–153.

    Google Scholar 

  36. Boussif O. Bioconjug Chem 1999; 10:877–883.

    Google Scholar 

  37. Boussif O. Proc Natl Acad Sci USA 1995; 92:7297–7301.

    Google Scholar 

  38. Haensler J, Szoka FC. Bioconjug Chem 1993; 4:372–379.

    Google Scholar 

  39. Midoux P, Monsigny M. Bioconjug Chem 1999; 10:406–411.

    Google Scholar 

  40. Han SO, Mahato RI, Sung YK et al; Mol Ther 2000; 2:302–317.

    Google Scholar 

  41. Mislick KA, Baldeschwieler JD. Proc Natl Acad Sci USA 1996; 93:12349–12354.

    Google Scholar 

  42. Wagner E, Curiel D, Cotten M. Adv Drug Del Rev 1994; 14:113–135.

    Google Scholar 

  43. Wagner E. Proc Natl Acad Sci USA 1992; 89:6099–6103.

    Google Scholar 

  44. Zauner W, Blaas D, Küchler E et al. J Virol 1995; 69:1085–1092.

    Google Scholar 

  45. Wagner E, Plank C, Zatloukal K et al. Proc Natl Acad Sci USA 1992; 89:7934–7938.

    Google Scholar 

  46. Kichler A, Behr J-P, Erbacher P. in Nonviral Vectors for Gene Therapy, L Huang, MC Hung E Wagner (eds.), Academic Press, 1999; New York.

    Google Scholar 

  47. Wagner E. In Nonviral Vectors for Gene Therapy, L Huang, MC Hung, E Wagner (eds.), Academic Press, New York, 1999; pp. 208–227.

    Google Scholar 

  48. Buschle, M. Hum Gene Ther 1995; 6:753–761.

    Google Scholar 

  49. Chen J, Gamou S, Takayanagi A et al. FEBS Lett 1994; 338:167–169.

    Google Scholar 

  50. Kircheis R. Gene Ther 1997; 4:409–418.

    Google Scholar 

  51. Blessing, T, Kursa M, Holzhauser R et al. Different strategies for Formation of PEGylated EGF-conjugated PEI/DNA complexes for targeted gene delivery. Manuscript submitted for publication 2000

  52. Ogris M. Gene Ther 1998; 5:1425–1433.

    Google Scholar 

  53. Shimizu N, Chen J, Gamou S et al. Cancer Gene Ther 1996; 3:113–120.

    Google Scholar 

  54. Cristiano RJ, Roth JA. Cancer Gene Ther 1996; 3:4–10.

    Google Scholar 

  55. Zabner, J, Fasbender AJ, Moninger T et al. J Biol Chem 1995; 270:18997–19007.

    Google Scholar 

  56. Brisson M, Huang L. Curr Opin Mol Ther 1999; 1:140–146.

    Google Scholar 

  57. Brunner S. Gene Ther 2000; 7:401–407.

    Google Scholar 

  58. Chowdhury NR. J Biol Chem 1993; 268:11265–11271.

    Google Scholar 

  59. Chowdhury NR. J Biol Chem 1996; 271:2341–2346.

    Google Scholar 

  60. Wu GY. J Biol Chem 1991; 266:14338–14342.

    Google Scholar 

  61. Wilson JM. J Biol Chem 1992; 267:963–967.

    Google Scholar 

  62. Plank C, Mechtler K, Szoka F et al. Hum Gene Ther 1996; 7:1437–1446.

    Google Scholar 

  63. Mahato RI, Kawabata K, Nomura T et al. J Pharmacol Sci 1995; 84:1267–1271.

    Google Scholar 

  64. Toncheva, V. Biochim Biophys Acta 1998; 1380:354–368.

    Google Scholar 

  65. Lemieux P. Gene Ther 2000; 7:986–991.

    Google Scholar 

  66. Sokoloff AV, Bock I, Zhang G et al. Mol Ther 2000; 2:131–139.

    Google Scholar 

  67. Coll JL. Hum Gene Ther 1999; 10:1659–1666.

    Google Scholar 

  68. Maheshwari A. Mol Ther 2000; 2:121–130.

    Google Scholar 

  69. Gautam A, Densmore CL, Waldrep CJ. Mol Ther 2000; 2:318–323.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogris, M., Wagner, E. Tumor-Targeted Gene Transfer with DNA Polyplexes. Somat Cell Mol Genet 27, 85–95 (2002). https://doi.org/10.1023/A:1022988008131

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022988008131

Keywords

Navigation