Journal of Applied Electrochemistry

, Volume 33, Issue 1, pp 85–91 | Cite as

Electrolytic decomposition of amaranth dyestuff using diamond electrodes

  • S. Hattori
  • M. Doi
  • E. Takahashi
  • T. Kurosu
  • M. Nara
  • S. Nakamatsu
  • Y. NishikiEmail author
  • T. Furuta
  • M. Iida


The electrolytic decomposition of an amaranth dyestuff solution using several combinations of electrodes with diamond and platinum is reported. It is observed that a portion of the amaranth is decomposed on the cathode surface while the other portion is decomposed to lower molecular weight components on the anode surface. The decolourizing rate is higher at diamond electrodes used as the anode and the cathode than with other combinations. This electrode combination also shows a rapid decrease in total organic carbon concentration. Acetic acid and oxalic acid are detected as the intermediate substances, and CO2 gas is generated as a final product corresponding to the decrease in the oxalic acid concentration.

amaranth electrolytic decomposition decolourizing rate diamond electrode TOC change 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Foti, D. Gandini, Ch. Comninellis, A. Perret and W. Haenni, Electrochem. Solid State Lett. 2 (1999) 228.Google Scholar
  2. 2.
    Gallegos and D. Pletcher, Electrochim. Acta 44 (1999) 2483.Google Scholar
  3. 3.
    D. Johnson, J. Feng and J. Houk, Electrochim. Acta 46 (2000) 323.Google Scholar
  4. 4.
    S. Stucki, R. Kotz, B. Carccer and W. Suter, J. Appl. Electrochem. 21 (1991) 909.Google Scholar
  5. 5.
    K. Kim, M. Kuppuswamy and R.F. Savinell, J. Appl. Electrochem. 30 (2000) 543.Google Scholar
  6. 6.
    G. Saracco, L. Solarino, R. Aigotti, V. Specchia and M. Maja, Electrochim. Acta 46 (2000) 373.Google Scholar
  7. 7.
    R. Amadelli, A. Battisti, D. Girenko, S. Kovalyov and A. Velichenko, Electrochim. Acta 46 (2000) 341.Google Scholar
  8. 8.
    Y.V. Pleskov, A.Y. Sakharova, M.D. Krotova, L.L. Bouilov and B.V. Spitsyn, J. Electroanal. Chem. 228 (1987) 19.Google Scholar
  9. 9.
    R. Tenne, K. Patel, K. Hashimoto and A. Fujishima, J. Electroanal. Chem. 347 (1993) 409.Google Scholar
  10. 10.
    G.M. Swain and R. Ramesham, Anal. Chem. 65 (1993) 345.Google Scholar
  11. 11.
    G.M. Swain, J. Electrochem. Soc. 141 (1994) 3382.Google Scholar
  12. 12.
    R. DeClements, B.L. Hirsche, M.C. Granger, J. Xu and G.M. Swain, J. Electrochem. Soc. 14 (1996) L150.Google Scholar
  13. 13.
    N. Katsuki, E. Takahashi, M. Toyoda, T. Kurosu, M. Iida, S. Wakita, Y. Nishiki and T. Shimamune, J. Electrochem. Soc. 145 (1998) 2358.Google Scholar
  14. 14.
    N. Katsuki, S. Wakita, Y. Nishiki, T. Shimamune, Y. Akiba and M. Iida, Jpn. J. Appl. Phys. 36 (1997) L260.Google Scholar
  15. 15.
    H.B. Martin, A. Argoitia, U. Landau, A.B. Anderson and J. Angus, J. Electrochem. Soc. 143 (1996) L133.Google Scholar
  16. 16.
    M. Granger and G. Swain, J. Electrochem. Soc. 146 (1999) 4551.Google Scholar
  17. 17.
    F. Bouamrane, A. Tadjeddine, R. Tenne, J.E. Butler, R. Kalish and Levy-Clement, J. Phys. Chem. B 102 (1998) 134.Google Scholar
  18. 18.
    Q. Chen, D. Gruen, A. Kraus and T. Corrigan, J. Electrochem. Soc. 148 (2001) E44.Google Scholar
  19. 19.
    B. Sarada, T. Rao, D. Tryk and A. Fijishima, J. Electrochem. Soc. 146 (1999) 1469.Google Scholar
  20. 20.
    T. Kuo, R. McCreery and G. Swain, Electrochem. Solid-State Lett. 2 (1999) 288.Google Scholar
  21. 21.
    N. Vinokur, B. Miller, Y. Avyigal and R. Kalish, J. Electrochem. Soc. 143 (1996) L238.Google Scholar
  22. 22.
    T. Yano, D. Tryk, K. Hashimoto and A. Fijishima, J. Electrochem. Soc. 145 (1998) 1870.Google Scholar
  23. 23.
    T. Yano, E. Popa, D. Tryk, K. Hashimoto and A. Fijishima, J. Electrochem. Soc. 146 (1999) 1081.Google Scholar
  24. 24.
    M. Panizza, I. Duo, P. M ichaud, G. Cerisola and Ch. Comninellis, Electrochem. Solid-State Lett. 3 (2000) 550.Google Scholar
  25. 25.
    F. Okino, H. S hibata, S. Kawasaki, H. Touhara, K. M omota, M. Gamo, I. Sakaguchi and T. Ando, Electrochem. Solid-State Lett. 2(1999) 382.Google Scholar
  26. 26.
    P. Michaud, E. Mahe, A. Perret, W. Haenni and Ch. Comninellis, Electrochem. Solid-State Lett. 3 (2000) 77.Google Scholar
  27. 27.
    S. Ferro, A. Battisti, I. Duo, Ch. Comninellis, W. Haenni and A. Perret, J. Electrochem. Soc. 147 (2000) 2614.Google Scholar
  28. 28.
    M. Fryda, D. Herrmann, L. Schafer, C. Klages, A. Perret, W. Haenni, Ch. Comninellis and D. Gandini, New Diamond and Frontier Carbon Tech. 9 (1999) 229.Google Scholar
  29. 29.
    D. Gandini, E. Mahe, P. Michaud, W. Haenni, A. Perret and Ch. Comninellis, J. App. Electrochem. 30 (2000) 1345.Google Scholar
  30. 30.
    E. Takahashi, T. Kurosu, K. Suga, Y. Nishiki, S. Wakita, M. Tanaka and S. Nakamatsu, Electrochem. (Denki Kagaku), in preparation.Google Scholar
  31. 31.
    Y. Nakajima, M. Sekimoto, K. Hirao, T, Shimamune and Y. Matsuda, Electrochem. (Denki Kagaku) 62 (1994) 1086.Google Scholar
  32. 32.
    T.M. Florence, Electroanal. Chem. Int. Elec. 52 (1974) 115.Google Scholar
  33. 33.
    K. Suga, Y. Nishiki, M. Tanaka and S. Nakamatsu, Electrochem. (Denki Kagaku) 66 (1998) 856.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • S. Hattori
    • 1
  • M. Doi
    • 1
  • E. Takahashi
    • 1
  • T. Kurosu
    • 1
  • M. Nara
    • 2
  • S. Nakamatsu
    • 2
  • Y. Nishiki
    • 2
    Email author
  • T. Furuta
    • 2
  • M. Iida
    • 3
  1. 1.Department of Electronics, School of Information Technology and ElectronicsTokai UniversityJapan
  2. 2.Development DepartmentPermelec Electrode Ltd, 2023-15 EndoFujisawa-city, KanagawaJapan
  3. 3.Junior CollegeTokai UniversityJapan

Personalised recommendations