Skip to main content
Log in

Impact of Accurate Photolysis Calculations on the Simulation of Stratospheric Chemistry

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

The interpretation of atmospheric measurements and the forecasting of the atmospheric composition require a hierarchy of accurate chemical transport and global circulation models. Here, the results of studies using Bremens Atmospheric Photochemical Model (BRAPHO) are presented. The focus of this study is given to the calculation of the atmospheric photolysis frequencies It is shown that the spectral high resolved simulation of the O2 Schumann–Runge bands leads to differences in the order of 10% in the calculated O2 photolysis frequency when compared with parameterizations used in other atmospheric models. Detailed treatment of the NO absorption leads to even larger differences (in the order of 50%) compared to standard parameterizations. Refraction leads to a significant increase in the photolysis frequencies at large solar zenith angles and, under polar spring conditions, to a significant change in the nighttime mixing ratio of some trace gases, e.g., NO3. It appears that recent changes in some important rate constants significantly alter the simulated BrOx- and HOx-budgets in the mid-latitude stratosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  • Allen, M. and Frederick, J. E., 1982: Effective photodissociation cross sections for molecular oxygen and nitric oxide in the Schumann-Runge bands, J. Atmos. Sci. 39, 2066-2075.

    Google Scholar 

  • Atkinson, R., Baulch, D. L., Cox, R. A., Hampson Jr., R. F., Kerr, J. A., Rossi, M. J., and Troe, J., 1997: Evaluated kinetic and photochemical data for atmospheric chemistry, Supplement V, J. Phys. Chem. Ref. Data 26(3), 521-1011. IUPAC Subcommittee in Gas Kinetic Data Evaluation for Atmospheric Chemistry.

    Google Scholar 

  • Balluch, M. and Lary, D. J., 1997: Refraction and atmospheric photochemistry, J. Geophys. Res. 102(D7), 8845-8854.

    Google Scholar 

  • Becker, G., Grooß, J.-U., McKenna, D. S., and Müller, R., 2000a: Stratospheric photolysis frequencies: Impact of an improved numerical solution of the radiative transfer equation, J. Atmos. Chem. 37, 217-229.

    Google Scholar 

  • Becker, G., Müller, R., McKenna, D. S., Rex, M., Carslaw, K. S., and Oelhaf, H., 2000b: Ozone loss rates in the Arctic stratosphere in the winter 1994/1995: Model simulations underestimate results of the Match analysis, J. Geophys. Res. 105(D12), 15175-15184.

    Google Scholar 

  • Blindauer, C., Rozanov, V., and Burrows, J. P., 1996: Actinic flux and photolysis frequency comparison computations using the model PHOTOGT, J. Atmos. Chem. 24, 1-21.

    Google Scholar 

  • Brown, P. N., Byrne, G. D., and Hindmarsh, A. C., 1989: VODE: A variable-coefficient ODE solver, SIAM J. Sci. Stat. Comput. 10(5), 1038-1051.

    Google Scholar 

  • Buchwitz, M., Rozanov, V. V., and Burrows, J. P., 2000: A correlated-k distribution scheme for overlapping gases suitable for retrieval of atmospheric constituents from moderate resolution radiance measurements in the visible/near-infrared spectral region, J. Geophys. Res. 105(D15), 15247-15261.

    Google Scholar 

  • Carslaw, K., Luo, B., and Peter, T., 1995: An analytic expression for the composition of aqueous HNO3-H2SO4 stratospheric aerosols including gas phase removal of HNO3, Geophys. Res. Lett. 22, 1877-1880.

    Google Scholar 

  • Carver, G. D., Brown, P., and Wild, O., 1997: The ASAD atmospheric chemistry integration package and chemical reaction database, Computer Physics Communications 105, 197-215.

    Google Scholar 

  • Chipperfield, M. P., 1999: Multiannual simulations with a three-dimensional chemical transport model, J. Geophys. Res. 104(D1), 1781-1805.

    Google Scholar 

  • Crutzen, P., Müller, R., Brühl, C., and Peter, T., 1992: On the potential importance of the gas phase reaction CH3O2 + ClO ? ClOO + CH3O and the heterogeneous reaction HOCl + HCl ? H2O + Cl2 in the ‘ozone hole’ chemistry, Geophys. Res. Lett. 19, 1113-1116.

    Google Scholar 

  • Dahlback, A. and Stamnes, K., 1991: A new spherical model for computing the radiation field available for photolysis and heating at twilight, Planetary and Space Science 39(5), 671-683.

    Google Scholar 

  • DeMajistre, R., Anderson, D., Lloyd, S., Swaminathan, P., and Zasadil, S., 1995: Effects of refraction on photochemical calculations, J. Geophys. Res. 100(D9), 18817-18822.

    Google Scholar 

  • DeMore, W. B., Sander, S. P., Golden, D. M., Hampson, R. F., Kurylo, M. J., Howard, C. J., Ravishankara, A. R., Kolb, C. E., and Molina, M. J., 1997: Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling, Evaluation 12, NASA JPL Pub. 97-4.

  • Eichmann, K.-U., 1995: Optimierung und Validierung des pseudo-sphärischen Strahlungstransportmodells GOMETRAN, Master’s Thesis, Universität Bremen.

  • Eyring, V., 1999: Modellstudien zur arktischen stratosphärischen Chemie im Vergleich mit Meßdaten, PhD Thesis, University of Bremen.

  • Grooß, J.-U., Müller, R., Becker, G., McKenna, D. S., and Crutzen, P. J., 1999: The upper stratospheric ozone budget: An update of calculations based on HALOE data, J. Atmos. Chem. 34, 171-183.

    Google Scholar 

  • Grooß, J.-U., Pierce, R. B., Crutzen, P. J., Grose,W. L., and Russell III, J. M., 1997: Re-formation of chlorine reservoirs in the southern hemisphere polar spring, J. Geophys. Res. 102(D11), 13141–13152.

    Google Scholar 

  • Hansen, G., Svenøe, T., Chipperfield, M. P., Dahlback, A., and Hoppe, U.-P., 1997: Evidence of substantial ozone depletion in winter 1995/96 over Northern Norway, Geophys. Res. Lett. 24(7), 799-802.

    Google Scholar 

  • Hanson, D. and Mauersberger, K., 1988: Laboratory studies of the nitric acid trihydrate: Implications for the south polar stratosphere, Geophys. Res. Lett. 15(8), 855-858.

    Google Scholar 

  • Hanson, D., Ravishankara, A., and Solomon, S., 1994: Heterogeneous reactions in sulfuric acid aerosols: A framework for model calculations, J. Geophys. Res. 99, 3615-3629.

    Google Scholar 

  • Ingham, T., Bauer, D., Landgraf, J., and Crowley, J. N., 1998: Ultraviolet-visible absorption cross sections of gaseous HOBr, J. Phys. Chem. A 102(19), 3293-3298.

    Google Scholar 

  • Jaeglé, L., Jacob, D. J., Brune, W. H., Faloona, I., Tan, D., Heikes, B. G., Kondo, Y., Sachse, G. W., Anderson, B., Gregory, G. L., Singh, H. B., Pueschel, R., Ferry, G., Blake, D. R., and Shetter, R. E., 2000: Photochemistry of HO x in the upper troposphere at northern midlatitudes, J. Geophys. Res. 105(D3), 3877-3892.

    Google Scholar 

  • Koop, T., Biermann, U. M., Raber, W., Luo, B. P., Crutzen, P. J., and Peter, T., 1995: Do stratospheric aerosol droplets freeze above the ice frost point?, Geophys. Res. Lett. 22(8), 917-920.

    Google Scholar 

  • Koppers, G. A. and Murtagh, D. P., 1996: Model studies of the influence of O2 photodissociation parametrisation in the Schumann-Runge bands on ozone related photolysis in the upper atmosphere, Annales Geophysicae 14, 68-79.

    Google Scholar 

  • Krämer, M., Müller, R., Bovensmann, H., Burrows, J. P., Brinkmann, J., Röth, E.-P., Grooß, J.-U., Müller, R., Woyke, T., Ruhnke, R., Günther, G., Hendricks, J., Lippert, E., Carslaw, K. S., Peter, T., Ziegler, A., Brühl, C., Steil, B., Lehmann, R., and McKenna, D. S., 2002: Intercomparison of stratospheric chemistry models under polar vortex conditions, J. Atmos. Chem., accepted.

  • Lary, D. and Pyle, J., 1991: Diffuse radiation, twilight, and photochemistry - I, J. Atmos. Chem. 13, 373-392.

    Google Scholar 

  • Madronich, S., 1987: Photodissociation in the atmosphere, 1. Actinic flux and effects of ground reflections and clouds, J. Geophys. Res. 92, 9740-9752.

    Google Scholar 

  • Minschwaner, K., Anderson, G. P., Hall, L. A., and Yoshino, K., 1992: Polynominal coefficients for calculating O2 Schumann-Runge cross sections at 0.5 cm-1 resolution, J. Geophys. Res. 97(D9), 10103-10108.

    Google Scholar 

  • Minschwaner, K., Salawitch, R. J., and McElroy, M. B., 1993: Absorption of solar radiation by O2: Implications for O3 and lifetime of N2O, CFCl3, and CF2Cl2, J. Geophys. Res. 98(D6), 10543-10561.

    Google Scholar 

  • Minschwaner, K. and Siskind, D. E., 1993: A new calculation of nitric oxide photolysis in the stratosphere, mesosphere, and lower thermosphere, J. Geophys. Res. 98(D11), 20,401-20,412.

    Google Scholar 

  • Müller, R. W., Bovensmann, H., Kaiser, J. W., Richter, A., Rozanov, A., Wittrock, F., and Burrows, J. P., 2002: Consistent interpretation of ground based and GOME BrO SCD data, Adv. Space Res. 29(11), 1655-1660.

    Google Scholar 

  • Nevison, C. D., Solomon, S., and Garcia, R. R., 1997: Model overestimates of NO y in the upper stratosphere, Geophys. Res. Lett. 24(7), 803-806.

    Google Scholar 

  • Peter, T., 1997: Microphysics and heterogeneous chemistry of polar stratospheric clouds, Annu. Rev. Phys. Chem. 48, 785-822.

    Google Scholar 

  • Poole, L. R. and McCormick, M. C., 1988: Polar stratospheric clouds and the Antarctic ozone hole, J. Geophys. Res. 93, 8423-8430.

    Google Scholar 

  • Prather, M., 1993: I. GISS photochemical model, in M. Prather and E. Remsberg (eds), The Atmospheric Effects of Stratospheric Aircraft: Report of the 1992 Models and Measurements Workshop, Vol. 1292 of NASA Reference Publication, pp. 76-85.

  • Prather, M., Ehhalt, D., Dentener, F., Derwent, R., Dlugokencky, E., Holland, E., Isaksen, I., Katima, J., Kirchhoff, V., Matson, P., Midgley, P., and Wang, M., 2001: Atmospheric chemistry and greenhouse gases, in J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson (eds), Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, U.S.A., pp. 239-288.

    Google Scholar 

  • Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., 1992: Numerical Recipes: The Art of Scientific Computation, Cambridge University Press, 2nd edn.

  • Raffalski, U., Klein, U., Franke, B., Langer, J., Sinnhuber, B.-M., Trentmann, J., Künzi, K., and Schrems, O., 1998: Ground based millimeter-wave observations of Arctic chlorine activation during winter and spring of 1996/97, Geophys. Res. Lett. 25(17), 3331-3334.

    Google Scholar 

  • Randeniya, L. K., Vohralik, P. F., Plumb, I. C., and Ryan, K. R., 1996: Heterogeneous BrONO2 hydrolysis: Effect on NO2 columns and ozone at high latitudes in summer, J. Geophys. Res. 102(D19), 23543-23557.

    Google Scholar 

  • Ravishankara, A. R., Shepherd, T. G., Chipperfield, M. P., Haynes, P. H., Kawa, S. R., Peter, T., Plumb, R. A., Portmann, R. W., Randel, W. J., Waugh, D. W., and Worsnop D. R., 1999: Lower stratospheric processes, in Scientific Assesment of Ozone Depletion: 1998, World Meteorological Organization, Global Ozone Research and Monitoring Project - Report No. 44, pp. 7.1-7.76.

  • Renard, J.-B., Pirre, M., Robert, C., Moreau, G., Huguenin, D., and Russell III, J., 1996: Nocturnal vertical distribution of stratospheric O3, NO2, andNO3 from baloon measurements, J. Geophys. Res. 101, 28793-28804.

    Google Scholar 

  • Rozanov, V. V., Diebel, D., Spurr, R. J. D., and Burrows, J. P., 1997: GOMETRAN: A radiative transfer model for the satellite project GOME - The plane-parallel version, J. Geophys. Res. 102(D14), 16683.

    Google Scholar 

  • Salawitch, R. J., Wofsy, S. C., Wennberg, P. O., Cohen, R. C., Anderson, J. G., Fahey, D. W., Gao, R. S., Keim, E. R., Woodbridge, E. L., Stimpfle, R. M., Koplow, J. P., Kohn, D. W., Wbster, C. R., May, R. D., Pfister, L., Gottlied, E.W., Michelsen, H. A., Yue, G. K., Prather,M. J., Wilson, J. C., Brock, C. A., Jonsson, H. H., Dye, J. E., Baumgardner, D., Proffitt, M. H., Loewenstein, M., Podolske, J. R., Elkins, J.W., Dutton, G. S., Hintsa, E. J., Dessler, A. E., Weinstock, E. M., Kelly, K. K., Boering, K. A., Daube, B. C., Chan, K. R., and Bowen, S. W., 1994: The diurnal variation of hydrogen, nitrogen, and chlorine radicals: Implications for the heterogeneous production of HNO2, Geophys. Res. Lett. 21(23), 2551-2554.

    Google Scholar 

  • Sander, S. P., Friedl, R. R., DeMore, W. B., Ravishankara, A. R., Golden, D. M., Kolb, C. E., Kurylo, M. J., Hampson, R. F., Huie, R. E., Molina, M. J., and Moortgat: G. K., 2000: Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling, Evaluation 13, Supplement to Evaluation 12: Update of Key Reactions, NASA JPL Pub. 00-3, available at http://jpldataeval.jpl.nasa.gov/.

  • Sinnhuber, B.-M., Müller, R., Langer, J., Bovensmann, H., Eyring, V., Klein, U., Trentmann, J., Burrows, J., and Künzi, K., 1999: Interpretation of mid-stratospheric arctic ozone measurements using a photochemical box-model, J. Atmos. Chem. 34, 281-290.

    Google Scholar 

  • Siskind, D. E., Minschwaner, K., and Eckman, R. S., 1994: Photodissociation of O2 and H2O in the middle atmosphere: Comparison of numerical methods and impact on model O3 and OH, Geophys. Res. Lett. 21(10), 863-866.

    Google Scholar 

  • Stolarski, R. S., 1995: 1995 Scientific Assessment of the Atmospheric Effects of Stratospheric Aircraft, NASA Reference Publication 1381.

  • Tabazadeh, A., Turco, R., Drdla, K., Jacobson, M., and Toon, O., 1994: A study of Type I polar stratospheric cloud formation, J. Geophys. Res. 21(15), 1619-1622.

    Google Scholar 

  • Wennberg, P. O., Salawitch, R. J., Donaldson, D. J., Hanisco, T. F., Lanzendorf, E. J., Perkins, K. K., Lloyd, S. A., Vaida, V., Gao, R. S., Hintsa, E. J., Cohen, R. C., Swartz, W. H., Kusterer, T. L., and Anderson, D. E., 1999: Twilight observations suggest unknown sources of HO x , Geophys. Res. Lett. 26(10), 1373-1376.

    Google Scholar 

  • Wittrock, F., Müller, R., Richter, A., Bovensmann, H., and Burrows, J., 2000: Measurements of iodine monoxide (IO) above Spitsbergen, Geophys. Res. Lett. 27(10), 1471-1474.

    Google Scholar 

  • WMO, 1985: Atmospheric Ozone, World Meteorological Organization, Global Ozone Research and Monitoring Project, Report No. 16.

  • Woyke, T., Müller, R., Stroh, F., McKenna, D., Engel, A., Margitan, J. J., Rex,M., and Carslaw, K. S., 1999: A test of our understanding of the ozone chemistry in the Artic polar vortex based on in situ measurements of ClO, BrO, and O3 in the 1994/1995 winter, J. Geophys. Res. 104(D15), 18755-18768.

    Google Scholar 

  • Yoshino, K., Cheung, A. S.-C., Esmond, J. R., Parkinson, W. H., Freeman, D. E., Jenouvier, A., Coquart, B., and Merienne, M. F., 1988: Improved absorption cross-sections of oxygen in the wavelength region 205-240 nm of the Herzberg Continuum, Planetary and Space Science 36(12), 1469-1475.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinrich Bovensmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trentmann, J., Bovensmann, H., Eyring, V. et al. Impact of Accurate Photolysis Calculations on the Simulation of Stratospheric Chemistry. Journal of Atmospheric Chemistry 44, 225–240 (2003). https://doi.org/10.1023/A:1022945412367

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022945412367

Navigation