Skip to main content
Log in

Electro-Gene-Transfer: A New Approach for Muscle Gene Delivery

  • Published:
Somatic Cell and Molecular Genetics

Abstract

Gene transfer into skeletal muscle cells by direct injection of naked plasmid DNA results in sustained gene expression. Intramuscular injection of plasmid DNA might thus be used to correct myopathies, to secrete locally or systematic therapeutic proteins and to elicit an immune response against specific antigens. However, the potential utility of this technique for gene application in humans is limited by the poor transduction efficiency and the low and highly variable level of gene expression. Different methods are thus being developed to increase the efficiency of gene transfer in muscles. It has been recently reported that a dramatic improvement of DNA transfer is achieved by applying an electric field to the muscle fibers subsequent to local DNA injection. Electro-gene-transfer increases gene expression by several orders of magnitude and strongly reduces interindividual variability. Electroinjection of genes encoding for secreted proteins resulted in sustained expression and disease correction in animal models of gene therapy. Moreover, the immunogenicity of DNA vaccines is dramatically increased when antigen-encoding plasmids are delivered by this technique. This technique may thus have broad and important applications in human gene therapy. This review provides a brief overview of the theory of electro-gene-transfer and describes parameters governing its efficiency in muscle. We also summarize the results obtained with electro-gene-transfer in animal models to date and the technical issues that must be solved before its use for human therapy can be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Wolff JA, Malone RW, Williams P et al. Science 1990; 247:1465–1468.

    Google Scholar 

  2. Wolff JA, Ludtke JJ, Acsadi, G et al. Hum Mol Genet 1992; 1:363–369.

    Google Scholar 

  3. Van Deutekom JCT, Hoffman EP, Hueard, J. Mol Med Today 1998; 4:214–220.

    Google Scholar 

  4. Rizzuto G, Cappelletti M, Maione D et al. Proc Natl Acad Sci USA 1999; 96:6417–6422.

    Google Scholar 

  5. Horn AN, Meek JA, Budahazi G et al. Hum Gene Ther 1995; 6:565–573.

    Google Scholar 

  6. Svensson EC, Tripathy SK, Leiden JM. Mol Med Today 1996; 2:166–172.

    Google Scholar 

  7. Engel AG, Yamamoto M, Fischbeck KH. In Myology, AG Engel, C Franzini-Armstrong (eds.), McGraw-Hill, New York, 1994, pp. 1133–1187.

    Google Scholar 

  8. Nabel G, Felgner PL. Trends Biotechnol 1993; 11:211–215.

    Google Scholar 

  9. Cohen AD, Boyer JD, Weiner DB. FASEB J 1998; 12:1611–1626.

    Google Scholar 

  10. Doh SG, Vahlsing HL, Hartikka J et al. Gene Ther 1997; 4:648–663.

    Google Scholar 

  11. Kitsis RN, Buttrick PM, McNally EM et al. Proc Natl Acad Sci USA 1991; 88:4138–4142.

    Google Scholar 

  12. Jiao S, Williams P, Berg RP et al. Hum Gene Ther 1992; 3:21–33.

    Google Scholar 

  13. Vitadello M, Schiaffino WV, Picard A et al. Hum Gene Ther 1994; 5:11–18.

    Google Scholar 

  14. Dupuis M, Denis-Mize K, Woo C et al. J Immunol 2000; 165:2850–2858.

    Google Scholar 

  15. Liu M, McClements W, Ulmer J et al. Vaccine 1999; 17:909–912.

    Google Scholar 

  16. Wang R, Doolan DL, Le TP et al. Science 1998; 282:476.

    Google Scholar 

  17. MacGregor RR, Boyer JD, Ugen KE et al. J Infect Dis 1998; 178:92.

    Google Scholar 

  18. Calarota S, Bratt G, Nordlund S et al. Lancet 1998; 351:1320.

    Google Scholar 

  19. Alila H, Coleman M, Nitta H et al. Hum Gene Ther 1997; 8:1785–1795.

    Google Scholar 

  20. Hartikka J, Sawdey M, Cornefert-Jensen F et al. Hum Gene Ther 1996; 7:1205–1217.

    Google Scholar 

  21. Baranov A, Glazkov P, Kiselev A et al. Gene Ther 1999; 6:1406–1414.

    Google Scholar 

  22. Li X, Eastman EM, Schwarts RJ et al. Nat Biotech 1999; 17:241–245.

    Google Scholar 

  23. Mumper RJ, Duguid JG, Khursheed A et al. Pharm Res 1996; 13:701–709.

    Google Scholar 

  24. Anwer K, Earle KA, Shi M et al. Pharm Res 1999; 16:889–895.

    Google Scholar 

  25. Lemieux P, Guerin N, Paradis G e al. Gene Ther 2000; 7:986–991.

    Google Scholar 

  26. Singh M, Briones M, Ott G et al. Proc Natl Acad Sci USA 2000; 97:811–816.

  27. Aihara H, Miyazaki J. Nat Biotech 1998; 16:867–870.

    Google Scholar 

  28. Mir LM, Bureau MF, Gehl J e al. Proc Natl Acad Sci USA 1999; 96:4262–4267.

    Google Scholar 

  29. Mathiesen I. Gene Ther 1999; 6:508–514.

    Google Scholar 

  30. Neumann E, Schaefer-Ridder M, Wang Y et al. EMBO J 1982; 1:841–845.

    Google Scholar 

  31. Chu G, Hayakawa H, Berg P. Nucleic Acids Res 1987; 15:1311.

    Google Scholar 

  32. Andreason GL, Evans GA. Biotechniques 1988; 6:650–660.

    Google Scholar 

  33. Weaver JC, Chizmadzhev YA. Biolectrochem Bioenerg 1996; 41:135–160.

    Google Scholar 

  34. Neumann E, Kakorin S, Toesing K. Biolectrochem Bioenerg 1999; 48:3–16.

    Google Scholar 

  35. Jaroszeski MJ, Gilbert R, Nicolau C et al. Adv Drug Deliv Rev 1999; 35:131–137.

    Google Scholar 

  36. Teissie J, Rols MP. in Charge and Field Effects in Biosystems-3, MJ Allen, SF Cleary, AE Sowers, D Shillady (eds.), Birkhauser Press, Boston.

  37. Lurquin PF. Mol Biotechnol 1997; 7:5–35.

    Google Scholar 

  38. Lee RC, Canady DJ, Hammer SM. J Burn Care Rehabil 1993; 5:529–539.

    Google Scholar 

  39. Gehl J, Mir L. Biochem Biophys Res Comm 1999; 261:377–380.

    Google Scholar 

  40. Gehl J, Thyge H, Sorensen H et al. Biochim Biophys Acta 1999; 1428:233–240.

    Google Scholar 

  41. Vicat JM, Boisseau S, Jourdes P et al. Hum Gene Ther 2000; 11:909–916.

    Google Scholar 

  42. Bettan M, Emmanuel F, Darteil R et al. Mol Ther 2000; 2:204–210.

    Google Scholar 

  43. Rizzuto G, Cappelletti M, Mennuni C et al. Hum Gene Ther 2000; 11:1891–1900.

    Google Scholar 

  44. Kreiss P, Bettan M, Crouzet J et al. J Gene Med 1999 1:245–250.

    Google Scholar 

  45. Maruyama H, Sugawa M, Moriguchi Y et al. Hum Gene Ther 2000; 11:429–437.

    Google Scholar 

  46. Abruzzese RV, Godin D, Mehta V et al. Mol Ther 2000; 2:276–287.

    Google Scholar 

  47. Abruzzese RV, Godin D, Burcin M et al. Hum Gene Ther 1999; 10:1499–1507.

    Google Scholar 

  48. Widera G, Austin M, Rabussay D et al. J Immunol 2000; 164:4635–4640.

    Google Scholar 

  49. Martin T, Parker SE, Hedstrom R et al. Hum Gene Ther 1999; 10:759–768.

    Google Scholar 

  50. Kadowaki S, Chen Z, Asanuma H et al. Vaccine 2000; 18:2779–2788.

    Google Scholar 

  51. Zucchelli S, Capone S, Fattori E et al. J Virol 2000; 74:11598–11607.

    Google Scholar 

  52. Bureau MF, Gehl J, Deleuze V et al. Biochim Biophys Acta 2000; 1474:353–359.

    Google Scholar 

  53. Stacy BD, Thorburn GD. Science 1996; 152:1076–1077.

    Google Scholar 

  54. Draghia-Aki R, Fiorotto ML, Anne Hill L et al. Nat Biotech 1999; 17:1179–1183.

    Google Scholar 

  55. Cole KS. Membranes, Ions and Impulses, University of California Press, Berkeley, 1972.

    Google Scholar 

  56. Selby M, Goldbeck C, Pertile T et al. J Biotechnol 2000; 83:147–152.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fattori, E., Monica, N.L., Ciliberto, G. et al. Electro-Gene-Transfer: A New Approach for Muscle Gene Delivery. Somat Cell Mol Genet 27, 75–83 (2002). https://doi.org/10.1023/A:1022927822244

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022927822244

Keywords

Navigation