Advertisement

Journal of Applied Electrochemistry

, Volume 33, Issue 1, pp 1–8 | Cite as

Preparation of methanol oxidation electrocatalysts: ruthenium deposition on carbon-supported platinum nanoparticles

  • F. Maillard
  • F. Gloaguen
  • J-M. LegerEmail author
Article

Abstract

Methanol oxidation electrocatalysts were prepared from Ru electrochemical or spontaneous deposition on commercial-grade carbon-supported Pt nanoparticles (Pt-Vulcan XC72, E-TEK). The resulting Ru coverage was estimated by cyclic voltammetry in supporting electrolyte. The maximum electrocatalytic activity for methanol oxidation at room temperature was observed at lower Ru coverage for spontaneous deposition than for electrodeposition; θRu ∼10% vs ∼20%, respectively. On the other hand, higher current densities for methanol oxidation were obtained in the case of electrodeposited Ru. These two results were related to the presence of non-reducible ruthenium oxides in the spontaneous deposit. The present work provides evidence that (i) efficient DMFC electrocatalysts can be achieved by Ru deposition on Pt nanoparticles, and (ii) formation of a PtRu alloy is not a required condition for effective methanol electrooxidation.

electrocatalysis methanol electrooxidation nanoparticles PtRu electrodes Ru deposition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Lamy, J-M. Léger and S. Srinivasan, in J.O.M. Bockris, B.E. Conway and R.W. White (Eds), ‘Modern Aspects of Electrochemistry’, Vol. 34 (Kluwer Academic/Plenum, New York, 2001), pp. 53–115.Google Scholar
  2. 2.
    S. Wasmus and A. Kuver, J. Electroanal. Chem. 461 (1999) 14.Google Scholar
  3. 3.
    J-M. Léger, J. Appl. Electrochem. 31 (2001) 767.Google Scholar
  4. 4.
    R. Parsons and T. VanderNoot, J. Electroanal. Chem. 257 (1988) 9.Google Scholar
  5. 5.
    O.A. Petry, B.I. Podlovchenko, A.N. Frumkin and H. Lal, J. Electroanal. Chem. 10 (1965) 253.Google Scholar
  6. 6.
    M. Watanabe and S. Motoo, J. Electroanal. Chem. 60 (1975) 267.Google Scholar
  7. 7.
    J. Munk, P.A. Christensen, A. Hamnett and E. Skou, J. Electroanal. Chem. 401 (1996) 215.Google Scholar
  8. 8.
    H. Wang, C. Wingender, H. Baltruschat, M. Lopez and M.T. Reetz, J. Electroanal. Chem. 509 (2001) 163.Google Scholar
  9. 9.
    H.A. Gasteiger, N. Markovic, P.N.J. Ross and E.J. Cairns, J. Electrochem. Soc. 141 (1994) 1795.Google Scholar
  10. 10.
    A. Kabbabi, R. Faure, R. Durand, B. Beden, F. Hahn, J-M. Léger and C. Lamy, J. Electroanal. Chem. 444 (1998) 41.Google Scholar
  11. 11.
    M. Watanabe and S. Motoo, J. Electroanal. Chem. 60 (1975) 275.Google Scholar
  12. 12.
    K.A. Friedrich, K.P. Geyzers, A.J. Dickinson and U. Stimming, J. Electroanal. Chem. 524–525 (2002) 261.Google Scholar
  13. 13.
    R. Ianniello, V.M. Schmidt, U. Stimming, S.J. and A. Wallau, Electrochim. Acta 39 (1994) 1863.Google Scholar
  14. 14.
    E. Herrero, K. Franaszczuk and A. Wieckowski, J. Electroanal. Chem. 361 (1993) 269.Google Scholar
  15. 15.
    E. Herrero, J.M. Feliu and A. Wieckowski, Langmuir 15 (1999) 4944.Google Scholar
  16. 16.
    G. Tremiliosi-Filho, H. Kim, W. Chrzanowski, A. Wieckowski, B. Grzybowska and P. Kulesza, J. Electroanal. Chem. 467 (1999) 143.Google Scholar
  17. 17.
    L. Liu, R. Viswanathan, Q. Fan, R. Liu and E.S. Smotkin, Electrochim. Acta 42 (1998) 3657.Google Scholar
  18. 18.
    P.A. Christensen, A. Hamnett, J. Munk and G.L. Troughton, J. Electroanal. Chem. 370 (1994) 251.Google Scholar
  19. 19.
    A. Kabbabi, F. Gloaguen, F. Andolfatto and R. Durand, J. Electroanal. Chem. 373 (1994) 251.Google Scholar
  20. 20.
    T. Frelink, W. Visscher and J.A.R. van Veen, J. Electroanal. Chem. 382 (1995) 65.Google Scholar
  21. 21.
    Y. Takasu, T. Iwasaki, W. Sugimoto and Y. Murakami, Electrochem. Comm. 2 (2000) 671.Google Scholar
  22. 22.
    S.L. Gojkovic and T.R. Vidakovic, Electrochim. Acta 47 (2001) 633.Google Scholar
  23. 23.
    A. Kelaidopolou, E. Abelidou and G. Kokkinidis, J. Appl. Electrochem. 29 (1999) 1255.Google Scholar
  24. 24.
    B.D. McNicol and R.T. Short, J. Electroanal. Chem. 81 (1977) 249.Google Scholar
  25. 25.
    F. Gloaguen, J-M. Léger and C. Lamy, J. Appl. Electrochem. 27 (1997) 1052.Google Scholar
  26. 26.
    V. Radmilovic, H.A. Gasteiger and P.N.J. Ross, J. Catal. 154 (1995) 98.Google Scholar
  27. 27.
    T.J. Schmidt, H.A. Gasteiger and R.J. Behm, Electrochem. Comm. 1 (1999) 1.Google Scholar
  28. 28.
    Z. Jusys, T.J. Schmidt, L. Dubau, K. Lasch, L. Jorissen, J. Garche and R.J. Behm, J. Power Sources 105 (2002) 297.Google Scholar
  29. 29.
    W. Chrzanowski, H. Kim and A. Wieckowski, Catal. Lett. 50 (1998).Google Scholar
  30. 30.
    T. Freelink, W. Visscher and J.A.R. van Veen, Langmuir 12 (1996) 3702.Google Scholar
  31. 31.
    W. Chrzanowski and A. Wieckowski, Langmuir 13 (1997) 5974.Google Scholar
  32. 32.
    H. Massong, H. Wang, G. Samjeske and H. Baltruschat, Electrochim. Acta 46 (2000) 701.Google Scholar
  33. 33.
    J.C. Davies, B.E. Hayden, J.D. Pegg and M.E. Rendall, Surf. Sci. 496 (2002) 110.Google Scholar
  34. 34.
    P. Waszczuk, J. Solla-Gullón, H-S. Kim, Y.Y. Tong, V. Montiel, A. Aldaz and A. Wieckowski, J. Catal. 203 (2001) 1.Google Scholar
  35. 35.
    U. Koponen, T. Peltonen, M. Bergelin, T. Mennola, M. Valkiainen, J. Kaskimies and M. Wasberg, J. Power Sources 86 (2000) 261.Google Scholar
  36. 36.
    F. Gloaguen, T. Napporn, S. Donon, M-J. Croissant, S. Berthelot, J-M. Léger, C. Lamy and S. Srinivasan, in J. McBreen (Ed.), ‘Electrode Materials and Processes for Energy Conversion and Storage IV’, Vol. 97-13, The Electrochemical Society, Pennington (1998), pp. 131–138.Google Scholar
  37. 37.
    F. Gloaguen, F. Andolfatto, R. Durand and P. Ozil, J. Appl. Electrochem. 24 (1994) 863.Google Scholar
  38. 38.
    F. Vigier, F. Gloaguen, J-M. Léger and C. Lamy, Electrochim. Acta 46 (2001) 4331.Google Scholar
  39. 39.
    R.C. Walker, M. Bailes and L.M. Peter, Electrochim. Acta 44 (1998) 1289.Google Scholar
  40. 40.
    B. Scharifker and G. Hills, Electrochim. Acta 28 (1983) 879.Google Scholar
  41. 41.
    W.F. Lin, M.S. Zei, M. Eiswirth, G. Ertl, T. Iwasita and W. Vielstich, J. Phys. Chem. B 103 (1999) 6968.Google Scholar
  42. 42.
    K. Kinoshita, J. Electrochem. Soc. 137 (1990) 845.Google Scholar
  43. 43.
    H. Kim, I. Rabelo de Moraes, G. Tremiliosi-Filho, R. Haasch and A. Wieckowski, Surf. Sci. 474 (2001) L203.Google Scholar
  44. 44.
    D. Aberdam, R. Durand, R. Faure, F. Gloaguen, J-L. Hazemann, E. Herrero, A. Kabbabi and O. Ulrich, J. Electroanal. Chem. 398 (1995) 43.Google Scholar
  45. 45.
    K.A. Friedrich, K.P. Geyzers, F. Henglein, A. Marmann, U. Stimming and R. Vogel, Z. Phys. Chem. 208 (1999) 137.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  1. 1.Equipe Electrocatalyse, LACCO, UMR 6503 CNRS -Université de PoitiersPoitiers cedexFrance

Personalised recommendations