Neurochemical Research

, Volume 28, Issue 5, pp 723–731 | Cite as

The Possible Role of Glutamate Uptake in Metaphit-Induced Seizures

  • M. N. Lipovac
  • T. Holland
  • A. Poleksic
  • C. Killian
  • A. Lajtha
Article

Abstract

In a study of the possible mechanism of action of metaphit and phencyclidine in the brain, the uptake of glutamate at the luminal side of the blood-brain barrier (BBB) was studied by means of an in situ brain perfusion technique in normal guinea pigs and in those pretreated with metaphit. Metaphit, an isothiocyanate analog of phencyclidine (PCP), induces time-dependent epileptogenic changes in the electroencephalogram in guinea pig, reaching a maximum 18–24 h after metaphit administration (50 mg/kg IP). In metaphit-pretreated animals a significant reduction of glutamate BBB uptake was found, in comparison with that of controls. Reduction of glutamate transport from blood to brain ranged from 77% to 79% in all brain structures studied. This inhibition was probably due to changes in the properties of saturable components responsible for transport of glutamate across the BBB. Kinetic measurements revealed a saturable amino acid influx into the parietal cortex, caudate nucleus, and hippocampus, with a Km between 3.1 and 5.1 μM, and the Vmax ranging from 14.3 to 27.8 pmol−1 g−1. The nonsaturable component, Kid, was statistically different from zero, ranging from 1.47 to 2.00 μM min−1 g−1. Influx of glutamate into the brain was not altered in the presence of 1 mM D-aspartate, but it was significantly inhibited in the presence of 1 mM L-aspartate. We conclude that the cerebrovascular permeability of circulating glutamate is due to the presence of a higher-capacity saturable receptor and/or a carrier-mediated transport system (75%) and also a low-capacity diffusion transport system (25%) for the glutamate located at the luminal side of the BBB. The glutamate transport system is probably fully saturated at physiological plasma glutamate concentrations.

Seizures blood brain barrier glutamate transport 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Hayes, B. A. and Balster, R. L. 1985. Anticonvulsant properties of phencyclidine-like drugs in mice. Eur. J. Pharmacol. 117:121–125.Google Scholar
  2. 2.
    Allen, R. M. and Young, S. J. 1978. Phencyclidine-induced psychosis, Am. J. Psychiatry 135:1081–1084.Google Scholar
  3. 3.
    Chen, G. 1973. Sympathomimetic anesthetics. Can. Anesth. Soc. J. 20:180–184.Google Scholar
  4. 4.
    Chen, G., Ensor, C. R., Russel, D., and Bohner, B. 1959. The pharmacology of 1-(1-phenylcyclohexyl) piperidine: HCL. J. Pharmacol. Exp. Ther. 127:241–250.Google Scholar
  5. 5.
    Sahai, S. 1990. Glutamate in the mammalian CNS. Eur. Arch. Psychiatr. Clin. Neurosci. 240:121–133.Google Scholar
  6. 6.
    Rafferty, M. F., Mattson, M., Jacobson, A. E., and Rice, K. C. 1985. A specific acylating agent for the 3H-phencyclidine receptors in the rat brain. FEBS Lett. 181:318–322.Google Scholar
  7. 7.
    Bluth, L. S., Rice, K. C., Jacobson, A. E., and Bowen, W. D. 1989. Acylation of receptors by metaphit, an isothiocyanate derivative of phencyclidine. Eur. J. Pharmacol. 161:273–277.Google Scholar
  8. 8.
    Contreras, P. C., Rafferty, M. F., Lessor, R. A., Rice, K. C., Jacobson, A. E., and O'Donohue, T. L. 1985. A specific alkylating ligand for phencyclidine (PCP) receptors antagonizes PCP behavioral effects. Eur. J. Pharmacol. 111:405–406.Google Scholar
  9. 9.
    Contreras, P. C., Johnson, S., and Fredman, R. 1986. Metaphit, an acylating ligand for phencyclidine receptors: Characterization of in vivo actions in the rat. J. Pharmacol. Exp. Ther. 238:1101–1107.Google Scholar
  10. 10.
    Koek, W., Woods, J. H., Jacobson, A. E., Rice, K. C., and Lessor, R. A. 1986. Metaphit, a proposed phencyclidine receptor acylator: Phencyclidine-like behavioral effects and evidence of antagonist activity in pigeons and rhesus monkeys. J. Pharmacol. Exp. Ther. 237:386–392.Google Scholar
  11. 11.
    Debler, E. A., Lipovac, M. N., Lajtha, A., Zlokovic, B. V., Jacobson, A. E., Rice, K. C., and Reith, M. E. A. 1989. Metaphit, an isothiocyanate analog of PCP, induces audiogenic seizures in mice. Eur. J. Pharmacol. 165:155–159.Google Scholar
  12. 12.
    Lipovac, M. N., Debler, A. E., Zlokovic, B. V., Jacobson, A. E., Rice, K. C., de Costa, B., Selmeci, G., Chi, L., and Reith, M. E. 1993. Metaphit-induced audiogenic seizure in mice: II. Studies on NMDA, GABA and sodium channel receptors and on the disposition of metaphit in the brain. Epilepsia 34:211–219.Google Scholar
  13. 13.
    Susic, V., Reith, M. E. A., Zlokovic, B. V., Lajtha, A., Jacobson, A. E., Rice, K. C., and Lipovac, M. N. 1991. Electroencephalographic characteristics of audiögenic seizures induced in metaphit-treated small rodents. Epilepsia 32:783–790.Google Scholar
  14. 14.
    Waller M. B., and Richter J. A. 1980. Effects of pentobarbital and Ca2+ on the resting and K+ stimulated release of several endogenous neurotransmitters from rat midbrain slices. Brain Pharmacol. 29:2189–2198.Google Scholar
  15. 15.
    Lipton, S. A. and Rosenberg, P. A. 1994. Excitatory amino acids as final common pathway for neurologic disorders. N. Engl. J. Med. 330:613–622.Google Scholar
  16. 16.
    Mathews, R. H., and Zind, R. 1977. Basis for substrate preference of amino acid transport system L over amino acid transport system A. Biochemistry 16:3820–3824.Google Scholar
  17. 17.
    Boxer, P. A. and Bigge, C. F. 1997. Mechanisms of neuronal cell injury/death and targets for drug intervention. Drug Disc. Today 2:219–228.Google Scholar
  18. 18.
    Olney, J. W. 1980. Excitotoxic mechanisms of neurotoxicity. Pages 2021-218, in Spencer P. S. and Schaumburg, H. H. (eds), Kainic Acid as a Tool in Neurobiology. Raven Press, New York.Google Scholar
  19. 19.
    Zlokovic B. V., Lipovac, M. N., Begley, D. J., Davson, H., and Rakic, L. J. 1988. Slow penetration of thyrotropin-releasing hormone across the blood-brain barrier of an in situ perfused guinea pig brain. J. Neurochem. 51:252–257.Google Scholar
  20. 20.
    Zlokovic, B. V., Begley, D. J., Djuricic, B. M., and Mitrovic, D. M. 1986. Measurement of solute transport across the blood brain barrier in the perfused guinea pig brain: Method and application to N-methyl-aminobutyric acid. J. Neurochem. 46:1444–1451.Google Scholar
  21. 21.
    Zlokovic, B. V. 1990. In vivo approaches for studying peptide interactions at the blood-brain barrier. J. Control. Release 13:185–202.Google Scholar
  22. 22.
    Zlokovic, B. V., Susic, V., Davson, H., Begley, D. J., Jankov, R. M., Mitrovic, D. M., and Lipovac, M. N. 1989. Saturable mechanism of delta sleep inducing peptide uptake at the blood-brain barrier of vascularly perfused guinea pig brain. Peptides 10:249–254.Google Scholar
  23. 23.
    Segal, M. B. and Zolkovic, B. V. 1989. The blood-brain barrier, amino acids and peptides. Pages 123-147. Kluwer Academic Publishers, London.Google Scholar
  24. 24.
    Budgge, J. 1974. The cephalic arteries of hystomorph rodents. Sym. Zool. Soc. Lond. 34:61–78.Google Scholar
  25. 25.
    Gjedde, A. 1981. High and low affinity transport of D-glucose from blood to brain. J. Neurochem. 36:1463–1471.Google Scholar
  26. 26.
    Patlak, C. S., Fenstermacher, J. D., and Blasberg, R. G. 1983. Graphical evaluation of blood to brain transfer constants from multiple time uptake data. J. Cereb. Blood Flow Metabol. 3:1–7.Google Scholar
  27. 27.
    Blasberg, R. G., Fenstermacher, J. D., and Patlak, C. S. 1983. Transport of alfa-aminoisobutyric acid across brain capillary and cellular membranes. J. Cereb. Blood Flow Metabol. 3:8–32.Google Scholar
  28. 28.
    Luby, E. D., Cohen, B. D., Rosenbaum, G., Gottlieb, J. S., and Kelly, R. 1959. Study of a new schizophrenomimetic drug: Sernyl. Arch. Neurol. Psych. 81:363–369.Google Scholar
  29. 29.
    Ohno, K., Pettigrew, K. D., and Rappoport, S. I. 1978. Lower limits of cerebrovascular permeability to non electrolytes in the conscious rat. Am. J. Physiol. 235:H229-H307.Google Scholar
  30. 30.
    Rappoport, S. I., Ohno, K., and Pettigrew, K. D. 1979. Drug entry into the brain. Brain Res. 172:354–359.Google Scholar
  31. 31.
    Smith, Q. R., Momma S., Anyagi, M., and Rapoport, S. I. 1987. Kinetics of neutral amino acid transport across the blood-brain barrier. J. Neurochem. 49:1651–1658.Google Scholar
  32. 32.
    Gjedde, A. 1988. Exchange diffusion of large neutral amino acids between blood and brain. Pages 195-209, in Rakic, L. J., Begley, D. J., Davson, H., and Zlokovic, B. V. (eds.), Peptide and Amino Acid Transport Mechanisms in the Central Nervous System, Macmillan Press, London.Google Scholar
  33. 33.
    Pardridge, W. M. and Mietys, L. J. 1982. Kinetics of neutral amino acid transport through the blood-brain barrier of the newborn rabbit. J. Neurochem. 38:955–962.Google Scholar
  34. 34.
    Takasato, J., Momma, S., and Smith, Q. R. 1985. Kinetic analysis of cerebrovascular isoleucine transport from saline plasma. J. Neurochem. 45:1013–1020.Google Scholar
  35. 35.
    Knott, G. D. 1979. M-Lab-a mathematical modeling tool. Comput. Prog. Biomed. 10:271–280.Google Scholar
  36. 36.
    Abbott, N. J. and Romero, I. A. 1996. Transporting therapeutics across the blood-brain barrier. Mol. Med. Today 2:106–113.Google Scholar
  37. 37.
    Gjedde, A.1983. Modulation of substrate transport to the brain. Acta Neurol. Scand. 67:3–25.Google Scholar
  38. 38.
    Smith, Q. R., Takasato, Y., and Rapoport, S. I. 1984. Kinetic analysis of L-leucine transport across the blood-brain barrier. Brain Res. 311:167–170.Google Scholar
  39. 39.
    Atkins, G. and Nimmo, I. A. 1980. Current trends in estimation of Michaelis-Menten parameters. Anal. Biochem. 104:1–9.Google Scholar
  40. 40.
    Atkins, G. L. 1983. A comparison of methods for estimating the kinetic parameters of two simple types of transport process. Biochem. Biophys. Acta 732:455–463.Google Scholar
  41. 41.
    Bradbury, M. W. B. 1979. The concepts of a blood-brain barrier. Pages 153-165. John Wiley, Chichester, U. K.Google Scholar
  42. 42.
    Oldendorf, W. H. 1970. Measurement of brain uptake of radio-labelled substances using a tritiated water internal standard. Brain Res. 24:372–376.Google Scholar
  43. 43.
    Yudilevich, D. L., DeRose, N., and Sepulveda, F. V. 1972. Facilitated transport of amino acids through the blood-brain barrier of the dog studied in a single capillary circulation. Brain Res. 44:569–578.Google Scholar
  44. 44.
    Yudilevich, D. L. and Wheeler, C. P. D. 1987. A competitive view of amino acid transport at the blood-brain barrier and placental barriers. Pages 249-273, in Rakic, L. J., Begley, D. J., Davson, H., and Zlokovic, B. V. (eds.), Peptide and Amino Acid Transport Mechanisms in the Central Nervous System, Macmillan Press, London.Google Scholar
  45. 45.
    Oldendorf, W. H. 1971. Brain uptake of radiolabelled amino acids, amines and hexoses after arterial injections. Am. J. Physiol. 221:1629–1639.Google Scholar
  46. 46.
    Oldendorf, W. H. and Szabo, J. 1976. Amino acids assignment to one of three blood-brain barrier carriers. Am. J. Physiol. 230:94–96.Google Scholar
  47. 47.
    Davson, H., Welch, K., and Segal, M. B. 1987. Physiology and Pathophysiology of the Cerebrospinal Fluid, Pages 375-453. Churchill Livingstone, Edinburgh.Google Scholar
  48. 48.
    Banks, W. A. and Kastin, A. J. 1988. Peptides and the blood-brain barrier: Penetration and modulating influences. Pages 21-33, in Rakic, L. J., Begley, D. J., Davson, H., and Zlokovic, B. V. (eds), Peptide and Amino Acid Transport Mechanisms in the Central Nervous System, Macmillan Press, London.Google Scholar
  49. 49.
    Ermish, A., Landgraf, L., Brust, P., Kretzschmar, R., and Hess, J. 1988. Peptide receptors of the cerebral capillary endothelium and the transport of amino acids across the blood-brain barrier. Pages 41-45, in Rakic, L. J., Begley, D. J., Davson, H., and Zlokovic, B. V. (eds.), Peptide and Amino Acid Transport Mechanisms in the Central Nervous System, Macmillan Press, London.Google Scholar
  50. 50.
    Pardridge, W. M., 1988. Recent advances in blood-brain barrier transport. Annu. Rev. Pharmacol. Toxicol. 28:25–39.Google Scholar
  51. 51.
    Yamakami, J., Sakurai, E., Sakudara, T., Maeda, K., and Hikichi, N. 1998. Stereoselective blood-brain barrier transport of histidine in rats. Brain Res. 812:105–112.Google Scholar
  52. 52.
    Yudilevich, D. L. and Sepulveda, F. V. 1975. The specificity of amino acid and sugar carriers in the capillaries of the dog brain studied in vivo by rapid indicator dilution. Pages 77-87, in Levi, G., Battistin, G., and Lajtha, A. (eds.), Transport Phenomena in the Nervous System, Plenum Press, New York.Google Scholar
  53. 53.
    Christensen, H. N. 1984. Organic ion transport during seven decades: The amino acids. Biochim. Biophys. Acta 779:255–269.Google Scholar
  54. 54.
    Quirion, R., DiMaggio, D. A., French, E. D., Contreras, P. C., Shiolach, J., Pert, C. B., Everist, H., Pert, A., and O'Donohue, T. L. 1984. Evidence for endogenous peptide ligand for the phenilcyclidine receptor. Peptides 5:967–972.Google Scholar
  55. 55.
    Lee, J. C. and Olzewski, J. 1961. Increased cerebrovascular permeability after repeated electroshocks. Neurology 11:515–519.Google Scholar
  56. 56.
    Lorenco, A. V. and Barlow, C. F. 1967. Effect of strychnine upon the entry of S(35)sulfate into the cat central nervous system. J. Pharmacol. Exp. Ther. 157:555–564.Google Scholar
  57. 57.
    Lorenco, A. V., Shirahige, I., Liang, M., and Barlow, C. F. 1972. Temporary alteration of cerebrovascular permeability to plasma proteins during drug-induced seizures. Am. J. Physiol. 223:268–277.Google Scholar
  58. 58.
    Sokrab, T. E., Kalimo, H., and Johansson, B. B. 1989. Endogenous serum albumin content in brain after short-lasting epileptic seizures. Brain Res. 489:231–236.Google Scholar
  59. 59.
    Pardrige, W. M. 1983. Brain metabolism: A perspective from the blood-brain barrier. Physiol. Rev. 63:1481–1535.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • M. N. Lipovac
    • 1
  • T. Holland
    • 1
  • A. Poleksic
    • 2
  • C. Killian
    • 3
  • A. Lajtha
    • 4
  1. 1.Hunter College School of Health SciencesNew York
  2. 2.Cold Spring Harbor LaboratoryCold Spring Harbor
  3. 3.University of Indianapolis, Krannert School of Physical TherapyIndianapolis
  4. 4.The Nathan S. Kline Institute for Psychiatric ResearchOrangeburg

Personalised recommendations