Skip to main content
Log in

Modelling Easily Biodegradability of Materials in Liquid Medium-Relationship Between Structure and Biodegradability

  • Published:
Journal of environmental polymer degradation Aims and scope Submit manuscript

Abstract

In the present project, twenty materials (e.g., polyhydroxybutyrate-hydroxyvalerate, polycaprolactone, cellulose acetate, polyacticacid, polyethylene), representing varied biodegradability levels were studied. An aerobic respirometric test, based on the CEN Draft, was setup. The biodegradability of each plastic film was evaluated by measuring the percentage of carbon converted into CO2 during 35 days. The values of the CO2 production were plotted versus days as a cumulative function. In order to reduce its number of points, the cumulative curve was modeled using a sigmoïd function (Hill sigmoïd). This model was compared to one found in the literature. A χ 2i test showed that the biodegradation curve was more accurately fitted with the model than the previous one. Three kinetic parameters were determined by this “Hill model”: one represents the maximal percentage of carbon converted into CO2, the second the “half-life time” in days of the degrading part of the material and the third one the curve radius.

In addition, the following analyses were carried out on each sample: elemental analysis, thickness, hydrophobicity and surface free energy measurements. In order to compress the information and to keep only relevant pieces, these parameters were submitted to a Principal Component Analysis. PCA found linear combinations of variables that describe major trends in the data. The two principal components which separate groups of materials were closely related to a chemical and a physical axis respectively. Materials showing a high biodegradability were related to high oxygen (and nitrogen) contents and low hydrophobicity: Material thickness did not influence the likeliness to biodegradability described by the maximum biodegradation rate. Finally, this study established the correlation between the biodegradation and the structure of biopolymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. L. Fuller, T. A. McKeon and D. D. Bills (1996) Agricultural Materials on Renewable Resources, ACS Symposium Series 647, American Chemical Society, Washington, DC.

    Google Scholar 

  2. E. Chiellini and R. Solaro (1996) Adv. Mater. 8(4), 305–313.

    Google Scholar 

  3. C. Clicquot de Mentque (1998) Environment magazine. 1566, 54–55.

    Google Scholar 

  4. R. Barili (1990) in Report “Association pour la Promotion Industrie-Agriculture” (Eds). European symposium: Biodegradable packagings and agricultural films. pp. 55–86.

  5. Y. Doi, Y. Kumagai, N. Tanahashi and K. Mukai (1992) in M. Vert, J. Feijen, A. Albertsson, G. Scott and E. Chiellini (Eds.). Biodegradable Polymers and Plastics. Royal Society of Chemistry, Cambridge, pp. 139–148.

    Google Scholar 

  6. Y. Poirier, D. Dennis, K. Klomparens, C. Nawrath and C. Somerville (1992) FEMS Microbiol. Rev. 103, 237–246.

    Google Scholar 

  7. Y. Yokota, R. Ishioka, Y. Moketi and N. Watanabe (1994 in Y. Doi and K. Fukuda (Eds.) Biodegradable Polymers and Plastics, Elsevier, Amsterdam-London-New York-Tokyo, pp. 577–583.

    Google Scholar 

  8. C. Bastioli, A. Cerutti, I. Guanella, G. C. Romano and M. Tosin (1994). Third Annual Meeting Bio/Environmentally degradable polymer society, June 6–8, 1994 Boston Massachusetts.

  9. P. Ehret (1996) T. U. T. 19, 25–26.

    Google Scholar 

  10. A. Calmon-Décriaud, V. Bellon-Maurel and F. Silvestre (1997) Adv. Polym. Sci. 135, 207–226.

    Google Scholar 

  11. R. J. Müller, J. Augusta, T. Walter and H. Widdecke (1997) in Y. Doi and K. Fukuda (Eds.). Biodegrable Plastics and Polymers, Elsevier, Amsterdam, pp. 237–49.

    Google Scholar 

  12. M. Itävaara and M. Vikman (1995) Chemosphere 31, 4359–4373.

    Google Scholar 

  13. OECD (1992) Ligne directive de l'OCDE pour les essais de produits chimiques, Paris. OECD 301B.

  14. ASTM (1993). Standard on Environmentally Degradable Plastics, Philadelphia. ASTM D 5209–91.

  15. Draft Method (1995) Evaluation of the ultimate aerobic biodegrad-ability and desintegration of packaging materials under aqueous medium. Doc. 15/02/95. CEN/TC 261/SC4/N42.

  16. G. T. G. Keursten and P. H. Groenevelt (1996) Biodegradation. 7, 329–333.

    Google Scholar 

  17. G. Swift (1992) FEMS Microbiol. Rev. 103, 339–346.

    Google Scholar 

  18. R. J. Larson, R. T. Williams and G. Swift (1992) Polym. Mat. Sci. Eng. 67, 348–350.

    Google Scholar 

  19. A. L. Andrady and Y. Song (1997) Polym. Mat. Sci. Eng. 76, 470–471.

    Google Scholar 

  20. S. J. Huang, M. S. Roby, C. A. Macri and J. A. Cameron (1992) in M. Vert, J. Feijen, A. Albertsson, G. Scott and E. Chiellini (Eds.). Biodegradable Polymers and Plastics. Royal Society of Chemistry, Cambridge, pp. 149–157.

    Google Scholar 

  21. M. Parick, R. A. Gross and S. P. Mc Carthy (1993) in C. Ching, D. Kaplan and E. Thomas, Biodegradable Polymers and Packaging, Technomic, Lancaster, pp. 159–170.

    Google Scholar 

  22. C. M. Buchanan, R. M. Gardnerand and R. J. Komarek (1993) J. Appl. Polym. Sci. 47, 1709–1719.

    Google Scholar 

  23. M. Okada, Y. Okada, A. Tao and K. Aoi (1996) J. Appl. Polym. Sci. 62, 2257–2265.

    Google Scholar 

  24. M. Van Der Zee, Dissertation, University of Twente Enschede, NL.

  25. S. Thiebaud (1995) Thesis, University of INP Toulouse, France, no 1087.

  26. K. C. Marshall (1990) in R. C. W. Berkeley, J. M. Lynch, J. Melling, P. R. Rutter and B. Vincent (Eds.) Microbial Adhesion to surface, Ellis Howwood Ltd., Chichester, pp. 187–196.

    Google Scholar 

  27. J. D. Andrade, L. M. Smith and D. E. Gregonis (1985) in: J. D. Andrade (ed.) Surface and interfacial aspects of biomedical polymers. 1-Surface chemistry and physics. Plenum Press, New York and London pp. 249–292.

    Google Scholar 

  28. R. N. Sturm (1973) J. Am. Oil Chem. Soc. 50, 159–167.

    Google Scholar 

  29. B. Spitzer, C. Mende, M. Menner and T. Luck (1996). J. Environ. Polym. Degrad. 4, 157–171.

    Google Scholar 

  30. S. Urstadt, J. Augusta, R. J. Müller and W. D. Deckwer (1995) J. Environ. Polym. Degrad. 3, 121–131.

    Google Scholar 

  31. G. Swift, M. Creamer, X. Wei and K. M. Yocom (1998) Macromol. Symp. 130, 379–391.

    Google Scholar 

  32. N. Mozes, F. Marchal, M. P. Hermesse, J. L. Van Haecht, L. Reuliaux, A. J. Leonard and P. G. Rouxhet (1987) Biotechnol. Bioeng. 30, 439–450.

    Google Scholar 

  33. J. E. Guillet, H. X. Huber and J. Scott (1992) in M. Vert, J. Feijen, A. Albertsson, G. Scott and E. Chiellini (Eds.). Biodegradable Polymers and Plastics. Royal Society of Chemistry, Cambridge, pp. 55–70.

    Google Scholar 

  34. N. Pujos (1996) DESS Dissertation, University of Toulouse (INSA-GBA), France.

  35. S. H. Imam (1990) Appl. Environ. Microbiol. 56, 1317–1322.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calmon, A., Silvestre, F., Bellon-Maurel, V. et al. Modelling Easily Biodegradability of Materials in Liquid Medium-Relationship Between Structure and Biodegradability. Journal of Polymers and the Environment 7, 135–144 (1999). https://doi.org/10.1023/A:1022845605474

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022845605474

Navigation