Advertisement

Stability of the Solution Set of Perturbed Nonsmooth Inequality Systems and Application

  • N. D. Yen
Article

Abstract

Stability properties of the solution set of generalized inequality systems with locally Lipschitz functions are obtained under a regularity condition on the generalized Jacobian and the Clarke tangent cone. From these results, we derive sufficient conditions for the optimal value function in a nonsmooth optimization problem to be continuous or locally Lipschitz at a given parameter.

Generalized inequality systems locally Lipschitz vector-valued functions generalized Jacobians optimal value functions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fiacco, A. V., Introduction to Sensitivity and Stability Analysis in Nonlinear Programming, Academic Press, New York, New York, 1983.Google Scholar
  2. 2.
    Bank, B., Guddat, J., Klatte, D., Kummer, B., and Tammer, K., Non-Linear Parametric Optimization, Birkhäuser, Basel, Switzerland, 1983.Google Scholar
  3. 3.
    Robinson, S. M., Stability Theory for Systems of Inequalities, Part 2: Differentiable Nonlinear Systems, SIAM Journal on Numerical Analysis, Vol. 13, pp. 497–513, 1976.Google Scholar
  4. 4.
    Duong, P. C., and Tuy, H., Stability, Surjectivity, and Local Invertibility of Nondifferentiable Mappings, Acta Mathematica Vietnamica, Vol. 3, pp. 89–105, 1978.Google Scholar
  5. 5.
    Zowe, J., and Kurcyusz, S., Regularity and Stability for the Mathematical Programming Problem in Banach Space, Applied Mathematics and Optimization, Vol. 5, pp. 49–62, 1979.Google Scholar
  6. 6.
    Gauvin, J., and Dubeau, F., Differential Properties of the Marginal Function in Mathematical Programming, Mathematical Programming Study, Vol. 19, pp. 101–119, 1982.Google Scholar
  7. 7.
    Rockafellar, R. T., Lagrange Multipliers and Subderivatives of Optimal Value Functions in Nonlinear Programming, Mathematical Programming Study, Vol. 17, pp. 28–66, 1982.Google Scholar
  8. 8.
    Clarke, F. H., Optimization and Nonsmooth Analysis, John Wiley and Sons, Wiley-Interscience, New York, New York, 1983.Google Scholar
  9. 9.
    Aubin, J. P., Lipschitz Behavior of Solutions to Convex Minimization Problems, Mathematics of Operations Research, Vol. 9, pp. 87–111, 1984.Google Scholar
  10. 10.
    Rockafellar, R. T., Lipschitzian Properties of Multifunctions, Nonlinear Analysis: Theory, Methods, Applications, Vol. 9, pp. 867–885, 1985.Google Scholar
  11. 11.
    Borwein, J. M., Stability and Regular Points of Inequality Systems, Journal of Optimization Theory and Applications, Vol. 48, pp. 9–52, 1986.Google Scholar
  12. 12.
    Aubin, J. P., and Frankowska, H., On Inverse Function Theorem for Set-Valued Maps, Journal de Mathématiques Pures et Appliquées, Vol. 66, pp. 71–89, 1987.Google Scholar
  13. 13.
    Frankowska, H., Some Inverse Mappings Theorems, Annales de l'Institut Henri Poincaré, Analyse Non Linéaire, Vol. 7, pp. 183–234, 1990.Google Scholar
  14. 14.
    Bonnans, J. F., and Launay, G., On the Stability of Sets Defined by a Finite Number of Equalities and Inequalities, Journal of Optimization Theory and Applications, Vol. 70, pp. 417–428, 1991.Google Scholar
  15. 15.
    Jourani, A., and Thibault, L., Approximations and Metric Regularity in Mathematical Programming in Banach Spaces, Mathematics of Operations Research, Vol. 18, pp. 390–401, 1993.Google Scholar
  16. 16.
    Mordukhovich, B., Complete Characterization of Openness, Metric Regularity, and Lipschitzian Properties of Multifunctions, Transactions of the American Mathematical Society, Vol. 340, pp. 1–36, 1993.Google Scholar
  17. 17.
    Mordukhovich, B., Lipschitzian Stability of Constraint Systems and Generalized Equations, Nonlinear Analysis, Vol. 22, pp. 173–206, 1994.Google Scholar
  18. 18.
    Dontchev, A. L., and Harger, W. W., Implicit Functions, Lipschitz Maps, and Stability in Optimization, Mathematics of Operations Research, Vol. 19, pp. 753–768, 1994.Google Scholar
  19. 19.
    Jourani, A., Constraint Qualifications and Lagrange Multipliers in Nondifferentiable Programming Problems, Journal of Optimization Theory and Applications, Vol. 81, pp. 533–548, 1994.Google Scholar
  20. 20.
    Yen, N. D., Stability of the Solution Set of Perturbed Nonsmooth Inequality Systems, Preprint IC/90/359, International Center for Theoretical Physics, Trieste, Italy, 1990.Google Scholar
  21. 21.
    Yen, N. D., Implicit Function Theorems for Set-Valued Maps, Acta Mathematica Vietnamica, Vol. 12, pp. 17–28, 1987.Google Scholar
  22. 22.
    Dien, P. H., and Yen, N. D., On Implicit Function Theorems for Set-Valued Maps and Their Applications to Mathematical Programming under Inclusion Constraints, Applied Mathematics and Optimization, Vol. 24, pp. 35–54, 1991.Google Scholar
  23. 23.
    Aubin, J. P., and Frankowska, H., Set-Valued Analysis, Birkhäuser, Berlin, Germany, 1990.Google Scholar
  24. 24.
    Aubin, J. P., Comportement Lipschitzien des Solutions de Problèmes de Minimisation Convexes, Comptes Rendus de l'Academie des Sciences, Paris, Vol. 295, pp. 235–238, 1982.Google Scholar
  25. 25.
    Rockafellar, R. T., Convex Analysis, Princeton University Press, Princeton, New Jersey, 1970.Google Scholar
  26. 26.
    Mangasarian, O. L., and Fromovitz, S., The Fritz-John Necessary Optimality Conditions in the Presence of Equality and Inequality Constraints, Journal of Mathematical Analysis and Applications, Vol. 17, pp. 37–47, 1967.Google Scholar
  27. 27.
    Sach, P. H., Differentiability of Set-Valued Maps in Banach Spaces, Mathematische Nachrichten, Vol. 139, pp. 215–235, 1988.Google Scholar
  28. 28.
    Pappalardo, M., Error Bounds for Generalized Lagrange Multipliers in Locally Lipschitz Programming, Journal of Optimization Theory and Applications, Vol. 73, pp. 205–210, 1992.Google Scholar
  29. 29.
    Ekeland, I., On the Variational Principle, Journal of Mathematical Analysis and Applications, Vol. 47, pp. 324–353, 1974.Google Scholar
  30. 30.
    Methlouthi, H., Sur le Calcul Différentiel Multivoque, Comptes Rendus de l'Academie des Sciences, Paris, Vol. 284, pp. 141–144, 1977.Google Scholar
  31. 31.
    Penot, J. P., Metric Regularity, Openness, and Lipschitzian Behavior of Multifunctions, Nonlinear Analysis, Vol. 13, pp. 629–643, 1989.Google Scholar
  32. 32.
    Mastroeni, M., Pappalardo, P., and Yen, N. D., Image of a Parametric Optimization Problem and Continuity of the Perturbation Function, Journal of Optimization Theory and Applications, Vol. 81, pp. 193–202, 1994.Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • N. D. Yen
    • 1
  1. 1.Institute of MathematicsNational Center for Natural Science and TechnologyHanoiVietnam

Personalised recommendations