Phylogenetic analysis of the mammalian Hoxc8 non-coding region

  • Chang-Bae Kim
  • Cooduvalli S. Shashikant
  • Kenta Sumiyama
  • Wayne C.H. Wang
  • Chris T. Amemiya
  • Frank H. Ruddle
Article

Abstract

The non-coding intergenic regions of Hox genes are remarkably conserved among mammals. To determine the usefulness of this sequence for phylogenetic comparisons, we sequenced an 800-bp fragment of the Hoxc9–Hoxc8 intergenic region from several species belonging to different mammalian clades. Results obtained from the phylogenetic analysis are congruent with currently accepted mammalian phylogeny. Additionally, we found a TC mini satellite repeat polymorphism unique to felines. This polymorphism may serve as a useful marker to differentiate between mammalian species or as a genetic marker in feline matings. This study demonstrates usefulness of a comparative approach employing non-coding regions of Hox gene complexes.

comparative genomics Hox genes mammalian phylogeny Hox genes mammalian phylogeny 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnason, U. and Gullberg, A. (1994) Relationship of baleen whales established by cytochrome b gene sequence comparison. Nature, 367, 726-728.Google Scholar
  2. Arnason, U. and Gullberg, A. (1996) Cytochrome b nucleotide sequences and the identification of five primary lineages of extant cetaceans. Mol. Biol. Evol., 13, 407-417.Google Scholar
  3. Belting, H.G., Shashikant, C.S. and Ruddle, F.H. (1998) Multiple phases of expression and regulaiton of mouse Hoxc8 during early embryogenesis. J. Exp. Zool., 282, 196-222.Google Scholar
  4. De Jong, W.W. (1998) Molecules remodel the mammalian tree. Trends Ecol. Evol., 13, 270-275.Google Scholar
  5. Felsenstein, J. (1995) PHYLIP (phylogeny inference package). Version 3.5c. Department of Genetics, University of Washington, Seattle.Google Scholar
  6. Janke, A. and Arnason, U. (1997) The complete mitochondrial genome of Alligator mississippiensis and separation between recent archosauria (birds and crocodiles). Mol. Biol. Evol. 14, 1266-1272.Google Scholar
  7. Janke, A., Xu, X. and Arnason, U. (1997) The complete mitochondrial genome of the wallaroo (Macropus robustus) and the phylogenetic relationship among Monotremata, Marsupialia, and Eutheria. Proc. Natl. Acad. Sci. USA, 94, 1276-1281.Google Scholar
  8. Jukes, T.H. and Cantor, C.R. (1969) Evolution of protein molecules. In Mammalian Protein Metabolism (Ed. H.N. Munro), Academic Press, New York, pp. 21-132.Google Scholar
  9. Margarit, E., Gullen, A., Rebordosa, C., Vidal-Taboada, J., Sanchez, M., Ballesta, F. and Oliva, R. (1998) Identification of conserved potentially regulatory sequences of the SRY gene from 10 different species of mammals. Biochem. Biophys. Res. Commun., 245, 370-377.Google Scholar
  10. Messenger, S.L. and McGuire, J.A. (1998) Morphological molecules, and phylogenetics of cetaceans. Syst. Biol., 47, 90-124.Google Scholar
  11. Ohland, D.P., Harley, E.H. and Best, P.B. (1995) Systematics of cetaceans using restriction site mapping of mitochondrial DNA. Mol. Phylogenet. Evol., 4, 10-19.Google Scholar
  12. Olsen, G.J., Matsuda, H., Hagstrom, R. and Overbeek, R. (1994) FastDNAml: a tool for construction og phylogenetic trees of DNA sequences using maximum-likelihood. Comput. Appl. Biosci., 10, 41-48.Google Scholar
  13. Saitou, N. and Nei, M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol., 4, 406-425Google Scholar
  14. Shashikant, C.S. and Ruddle, F.H. (1996) Combinations of closely situated cis-acting elements determine tissue-specific patterns and anterior extent of early Hoxc8 expression. Proc. Natl. Acad. Sci. USA, 93, 12364-12369.Google Scholar
  15. Shashikant, C.S., Bieberich, C.J., Belting, H.G., Wang, J.C., Borbely, M.A. and Ruddle, F.H. (1995) Regulation of Hoxc-8 during mouse embryonic development: identification and characterization of critical eleements involved in early neural tube expression. Development, 121, 4339-4347.Google Scholar
  16. Shashikant, C.S., Kim, C.B., Borbely, M.A., Wang, W.C.H. and Ruddle, F.H. (1998) Comparative studies on mammalian Hoxc8 early enhancer sequence reveal a baleen whale-specific deletion of a cis-acting element. Proc. Natl. Acad. Sci. USA, 95, 15446-15451.Google Scholar
  17. Shimamura, M., Yasue, H., Ohshima, K., Abe, H., Kato, H., Kishiro, T., Goto, M., Munechika, I. and Okada, N. (1997) Molecular evidence from retroposons that whales form a clade within even-toed ungulates. Nature, 388, 666-670.Google Scholar
  18. Spek, C.A., Bertina, R.M. and Reitsma, P.H. (1998) Identification of evolutionarily invariant sequences in the protein C gene promoter. J. Mol. Evol., 47, 663-669. Springer, M.S., Cleven, G.C., Madsen, O., De Jong, W.W., Waddell, V.G., Amrine, H.M. and Stanhope, M.J. (1997). Endemic African mammals shake the phylogenetic tree. Nature, 388, 61-64.Google Scholar
  19. Sumiyama, K., Kim, C.B. and Ruddle, F.H. (2001) An efficient cis-element discovery method using multiple sequence comparisons based on evolutionary relationships. Genomics, 71, 260-262.Google Scholar
  20. Swofford, D.L. (1998) PAUP*. Phylogenetic Analysis Using Parsimony (* and other methods). Version 4. Sinauer Associates, Sunderland, MA.Google Scholar
  21. X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res., 25, 4876-4882.Google Scholar
  22. Yamamoto, H., Kudo, T., Masuko, N., Miura, H., Sato, S., Tanaka, M., Tanaka, S., Takeuchi, S., Shibahara, S. and Takeuchi, T. (1992) Phylogeny of regulatory regions of vertebrate tyrosinase genes. Pigment Cell Res., 5, 284-294.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Chang-Bae Kim
    • 1
  • Cooduvalli S. Shashikant
    • 2
  • Kenta Sumiyama
    • 1
  • Wayne C.H. Wang
    • 2
  • Chris T. Amemiya
    • 3
  • Frank H. Ruddle
    • 1
  1. 1.Department of Molecular, Cellular, and Developmental BiologyYale UniversityNew HavenUSA
  2. 2.Genetic Resources CenterKorea Research Institute of Bioscience and BiotechnologyTaejonKorea
  3. 3.Department of Dairy and Animal Science, College of Agricultural SciencesThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations