Skip to main content
Log in

Determination of the Kinetic Significance of Elementary Steps in the Reaction of Ethylbenzene Oxidation Inhibited by para-Substituted Phenols: Choice of an Effective Antioxidant

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

A conceivable method (“value” method) for analyzing the reaction kinetics models of inhibited liquid-phase oxidation of organic compounds was considered. A procedure for the numerical calculations of the molecular structure parameters of an inhibitor and an inhibitor concentration that results in a maximum inhibition of the reaction was presented. In the kinetic model of a chain reaction of liquid-phase ethylbenzene oxidation in the presence of a para-methylphenol inhibitor, the dynamics of contributions from individual steps was calculated. This allowed us to simplify the reaction mechanism. The inhibition of the oxidation reaction due to reactions with the participation of a phenoxyl radical was found to occur under conditions of the quasi-equilibrium

RO ·2 +HO'RRO2H +OC6H4'R

The molecular structures and initial concentrations of para-substituted phenols, which are most effective for the given reaction conditions, were determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Emanuel', N.M., Denisov, E.T., and Maizus, Z.K., Tsepnye reaktsii okisleniya uglevodorodov v zhidkoi faze (Chain Reactions of Liquid-Phase Oxidation of Hydro-carbons), Moscow: Nauka, 1965.

    Google Scholar 

  2. Scott, J., Atmospheric Oxidation and Antioxidants, Amsterdam: Elsevier, 1965.

    Google Scholar 

  3. Pospisil, I., Degradation and Stabilization of Polymers, Amsterdam: Elsevier, 1983, vol. 4, p. 193.

    Google Scholar 

  4. Howard, J.A., Advances in Free Radical Chemistry, London: Logos, 1972, vol. 4, p. 173.

    Google Scholar 

  5. Emanuel', N.M. and Buchachenko, A.L., Khimicheskaya fizika molekulyarnogo razrusheniya i stabilizatsii polimerov (Chemical Physics of Molecular Degradation and Stabilization of Polymers), Moscow: Nauka, 1988.

    Google Scholar 

  6. Denisov, E.T., Oxid. Commun., 1984, vol. 6, p. 309.

    Google Scholar 

  7. Denisov, E.T. and Azatyan, V.V., Ingibirovanie tsepnykh reaktsii (Inhibition of Chain Reactions), Chernogolovka, 1997.

  8. Roginskii, V.A., Fenol'nye antioksidanty. Reaktsionnaya sposobnost’ i effektivnost' (Phenolic Antioxidants: Reactivity and Effectiveness), Moscow: Nauka, 1988.

    Google Scholar 

  9. Autooxidation and Antioxidant, Lundberg, W.O., Ed., New York: Wiley, 1961, vol. 1, p. 450.

    Google Scholar 

  10. Autooxidation in Food and Biological Systems, Simic, M.G. and Karel, M.W.O., Eds., New York: Plenum, 1980.

    Google Scholar 

  11. Shlyapinikov, Yu.A., Kiryushkin, S.G., and Mar'in, A.P., Antiokislitel'naya stabilizatsiya polimerov (Antioxidating Stabilization of Polymers), Moscow: Khimiya, 1986.

    Google Scholar 

  12. Kharitonov, V.V., Psikha, B.L., and Zaikov, G.E., Chem. Phys. Rep., 1997, vol. 16, no.3, p. 416.

    Google Scholar 

  13. Pis'menskii, A.V., Psikha, B.L., and Kharitonov, V.V., Vysokomol. Soedin. óA, 1998, vol. 40, p. 632.

    Google Scholar 

  14. Tavadyan, L.A., Arm. Khim. Zh., 1987, vol. 40, no.2, p. 81.

    Google Scholar 

  15. Tavadyan, L.A. and Martoyan, G.A., Chem. Phys. Rep., 1994, vol. 13, no.5, p. 793.

    Google Scholar 

  16. Tavadyan, L.A. and Martoyan, G.A., Khim. Zh. Arm., 1995, vol. 48, nos.1-3, p. 81.

    Google Scholar 

  17. Martoyan, G.A. and Tavadyan, L.A., Khim. Zh. Arm., 1996, vol. 49, no.4, p. 17.

    Google Scholar 

  18. Martoyan, G.A. and Tavadyan, L.A., Khim. Fiz., 2001, vol. 20, no.2, p. 26.

    Google Scholar 

  19. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., and Mishchenko, E.F., Matematicheskaya teoriya optimal'nykh protsessov (Mathematical Theory of Optimal Processes), Moscow: Fizmatgiz, 1961.

    Google Scholar 

  20. Gordon, A.J. and Ford, R.A., The Chemist's Companion: A Handbook of Practical Data, Techniques and References, New York: Wiley, 1972.

    Google Scholar 

  21. Denisov, E.T., Itogi Nauki Tekh., Kinet. Katal., Moscow: VINITI, vol. 9, p. 158.

  22. Gagarina, A.B., Pisarenko, L.M., and Emanuel', N.M., Dokl. Akad. Nauk SSSóR, 1973, vol. 21, no.3, p. 653.

    Google Scholar 

  23. Mailard, B., Ingold, K.U., and Scaiano, J.C., J. Am. Chem. Soc., 1983, vol. 105, no.15, p. 5095.

    Google Scholar 

  24. Emanuel', N.M. and Gal, D., Okislenie etilbenzola. Model'naya reaktsiya (Oxidation of Ethylbenzene: A Model Reaction), Moscow: Nauka, 1984, p. 208.

    Google Scholar 

  25. Landolt-Bornstein, Numerical Data and Functional Relationships in Science and Technology, Berlin, 1984, p. 142.

  26. Andar, M., Meyerstain, D., and Neta, P., J. Chem. Soc. A, 1966, vol. 2, no.8, p. 742.

    Google Scholar 

  27. Gal, D., Blumberg, E.A., Valendo, A.Ya., and Emanuel, N.M., Magy. Kem. Folyoirat, 1979, vol. 85, p. 529.

    Google Scholar 

  28. Matienko, L.I., Goldina, L.A., Skibida, I.P., and Maizus, Z.K., Izv. Akad. Nauk SSSR, Ser. Khim., 1975, no. 2, p. 287.

    Google Scholar 

  29. Tsepalov, V.F. and Shlyapintokh, V.Ya., Kinet. Katal., 1962, vol. 3, p. 870.

    Google Scholar 

  30. Tavadyan, L.A., Khim. Fiz., 1986, vol. 5, no.1, p. 63.

    Google Scholar 

  31. Tavadyan, L.A., Khim. Fiz., 1991, vol. 10, no.5, p. 650.

    Google Scholar 

  32. Mahoney, L.R. and Da Rooge, M.A., J. Am. Chem. Soc., 1975, vol. 97, no.16, p. 4722.

    Google Scholar 

  33. Das, P.K., Encinas, M.V., Steenken, S., and Scaiano, J.C., J. Am. Chem. Soc., 1981, vol. 103, no.14, p. 4162.

    Google Scholar 

  34. Encinas, M.V. and Scaiano, J.C., J. Am. Chem. Soc., 1981, vol. 103, no.21, p. 6393.

    Google Scholar 

  35. Martem'yanov, V.S., Denisov, E.T., and Samoilova, L.A., Izv. Akad. Nauk SSSR, Ser. Khim., 1972, no. 5, p. 1039.

    Google Scholar 

  36. Mahoney, L.R. and Weiner, S.A., J. Am. Chem. Soc., 1972, vol. 94, no.2, p. 585.

    Google Scholar 

  37. Denisov, E.T., Itogi Nauki Tekh., Kinet. Katal., Moscow: VINITI, 1987, vol. 17, p. 115.

    Google Scholar 

  38. Korcek, S., Cheiner, J.H.B., Howard, J.A., and Ingold, K.U., Can. J. Chem., 1972, vol. 50, no.14, p. 2285.

    Google Scholar 

  39. Rubtsov, V.I., Roginskii, V.A., Miller, V.B., and Zaikov, G.E., Kinet. Katal., 1980, vol. 21, no.3, p. 612.

    Google Scholar 

  40. Gottwald, B.A., Simulation, 1981, vol. 33, p. 103.

    Google Scholar 

  41. Tomas, J.R., J. Am. Chem. Soc., 1964, vol. 86, no.22, p. 4807.

    Google Scholar 

  42. Hammet, L.P., Physical Organic Chemistry, McGraw-Hill, 1970.

  43. Khrapova, N.G., Lipidy. Struktura, biosintez, prevrashcheniya i funktsii (Lipids: Structure, Biosynthesis, Transformations, and Functions), Burlakova, E.B. and Severin, S.E., Eds., Moscow: Nauka, 1977, p. 157.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tavadyan, L.A., Martoyan, G.A. & Minasyan, S.H. Determination of the Kinetic Significance of Elementary Steps in the Reaction of Ethylbenzene Oxidation Inhibited by para-Substituted Phenols: Choice of an Effective Antioxidant. Kinetics and Catalysis 44, 91–100 (2003). https://doi.org/10.1023/A:1022576802859

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022576802859

Keywords

Navigation