Skip to main content
Log in

A Laboratory and Theoretical Study on the Uptake of SO2 Gas by Large and Small Water Drops Containing Heavy Metal Ions

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

Laboratory experiments have been carried out to investigate the uptake of sulfur dioxide by water drops containing heavy metal ions where the metal ions serve as catalysts to oxidise the taken up S(IV) into S(VI). During the gas uptake the drops were freely suspended at their terminal velocity in the airstream of the Mainz vertical wind tunnel. Two series of experiments were carried out, one with large millimeter size water drops containing manganese or iron ions, and the other with small water drops containing manganese ions and having radii in hundreds of micron size range. The experimental results were compared against model computations using the Kronig–Brink model and the fully mixed model, modified for the case that heavy metal ions present in the liquid phase act as catalysts for the oxidising process. The results of the model calculations show that there are only small differences between the predicted gas uptake according to the two models. In addition it was found that the experimental obtained results from the uptake of SO2 by water drops containing heavy metal ions for both, large and small water drops did agree with the model results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barrie, L. A., 1985: Features of the atmospheric cycle of aerosol trace elements and sulfur dioxide revealed by baseline observations in Canada, J. Atmos. Chem. 3, 139-152.

    Google Scholar 

  • Barrie, L. A. and Georgii, H. W., 1976: An experimental investigation of the absorption of sulfur dioxide by water drops containing heavy metal ions, Atmos. Environ. 10, 743-749.

    Google Scholar 

  • Beard, K. V. and Pruppacher, H. R., 1969: A determination of the terminal velocity and drag of small water drops by means of a wind tunnel, J. Atmos. Sci. 26, 1066-1072.

    Google Scholar 

  • Beilke, S., 1970: Laboratory investigations of washout trace gases, Precipitation Scavenging - 1970, U.S. Atomic Energy Commission, Nat. Techn. Info. Service, U.S. Dept. Commerce, Springfield VA, pp. 261-267.

    Google Scholar 

  • Beilke, S. and Georgii, H.W., 1968: Investigation on the incorporation of sulfur dioxide into fog and raindrops, Tellus 20, 435-441.

    Google Scholar 

  • Beilke, S., Lamb, D., and Müller, J., 1975: On the oxidation of SO2 in aqueous systems, Tellus 20, 435-441.

    Google Scholar 

  • Calvert, J. G., 1984: SO2, NO, and NO2 oxidation mechanisms: Atmospheric considerations, Acid Precipitation Series 3, Butterworth Publishers, 254 pp.

  • Daum, P. H., Schwartz, S. E., and Newman, L., 1983: Studies of the gas and aqueous phase composition of stratiform clouds, Precipitation Scavenging, Dry Deposition, and Resuspension 1, 31-51.

    Google Scholar 

  • Diehl, K., Vohl, O., Mitra, S. K., and Pruppacher, H. R., 2000: A laboratory and theoretical study on the uptake of sulfur dioxide gas by small water drops containing hydrogen peroxide under laminar and turbulent conditions, Atmos. Environ. 34, 2865-2871.

    Google Scholar 

  • Grgić, I., Hudrik, V., Bizjak, M., and Levec, J., 1991: Aqueous S(IV) oxidation - I. Catalytic effects of some metal ions, Atmos. Environ. 25A(8), 1591-1597.

    Google Scholar 

  • Hegg, D. A. and Hobbs, P. V., 1981: Cloud water chemistry and chemical production of sulfates in clouds, Atmos. Environ. 15, 1597-1604.

    Google Scholar 

  • Hegg, D. A. and Hobbs, P. V., 1982: Measurements of sulfate production in natural clouds, Atmos. Environ. 16, 2663-2668.

    Google Scholar 

  • Hegg, D. A., Hobbs, P. V., and Raschke, L. F., 1984: Measurements of the scavenging of sulfate and nitrate in clouds, Atmos. Environ. 18, 1939-1946.

    Google Scholar 

  • Hoffmann, M. R. and Calvert, J. G., 1985: Chemical transformation modules for Eulerian acid deposition Models. II: The aqueous phase chemistry, NCAR, Boulder, Co.

  • Ibusuki, T. and Barnes, H. M., 1984: Manganese (II) catalysed sulfur dioxide oxidation in aqueous solution at environmental concentrations, Atmos. Environ. 18(1), 145-151.

    Google Scholar 

  • Kronig, R. and Brink, J. C., 1950: On the theory of extraction from falling droplets, J. Appl. Sci. Res. 2, 142-154.

    Google Scholar 

  • Maahs, H. G., 1983: Kinetics and mechanism of the oxidation of S(IV) by ozone in aqueous solution with particular reference to SO2 conversion in non-urban tropospheric clouds, J. Geophys. Res. 88(C15), 10,721-10,732.

    Google Scholar 

  • Mitra, S. K., Waltrop, A., Hannemann, A., Flossmann, A., and Pruppacher, H. R., 1992: A wind tunnel and theoretical investigation to test various theories for the absorption of SO2 by drops of pure water and water drops containing H2O2 and (NH4)2SO4, in S. E. Schwartz and W. G. N. Slinn (eds), Precipitation Scavenging and Atmosphere - Surface Exchange, Hemisphere Publishing Corporation, Washington, 1, pp. 123-142.

    Google Scholar 

  • Pruppacher, H. R., 1988: Auswaschen von atmosphärischen Spurenstoffen durchWolken und Niederschlag mittels eines vertikalen Windkanals. BPT-Bericht 9/88, 62 pp. [available from G.S.F. Forschungszentrum Neuherberg, Ingoldstädter Landstr. 1, 85764 Oberschleissheim]

  • Pruppacher, H. R. and Klett, J. D., 1997: Microphysics of Clouds and Precipitation, 2nd edn., Kluwer Academic Publishers, Dordrecht, 954 pp.

    Google Scholar 

  • Schmidkunz, H., 1969: Chemilumineszenz der Sulphitoxidation, PhD Thesis, Universität Frankfurt.

  • Seinfeld, J. H., 1986: Atmospheric Chemistry and Physics of Air Pollution, Wiley, New York, pp. 195-246.

    Google Scholar 

  • Vohl, O., 1989: Die dynamischen Charakteristika des Mainzer vertikalenWindkanals, Thesis, Institut für Physik der Atmosphäre, Universität Mainz.

  • Walcek, C. J. and Pruppacher, H. R., 1984: On the scavenging of SO2 by cloud and rain drops. I: A theoretical study of SO2 absorption and desorption for water drops in air, J. Atmos. Chem. 1, 269-289.

    Google Scholar 

  • Walcek, C. J., Pruppacher, H. R., Topalian, J. H., and Mitra, S. K., 1984: On the scavenging of SO2 by cloud and rain drops. II: An experimetnal study of SO2 absorption and desorption for water drops in air, J. Atmos. Chem. 1, 291-306.

    Google Scholar 

  • Waltrop, A., Mitra, S. K., Flossmann, A. I., and Pruppacher, H. R., 1991: On the scavenging of SO2 by cloud and rain drops. IV: A wind tunnel and theoretical study on the adsorption of SO2 in the ppb(v) range by water drops containing H2O2, J. Atmos. Chem. 12, 1-17.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Mitra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heusel-Waltrop, A., Diehl, K., Mitra, S.K. et al. A Laboratory and Theoretical Study on the Uptake of SO2 Gas by Large and Small Water Drops Containing Heavy Metal Ions. Journal of Atmospheric Chemistry 44, 211–223 (2003). https://doi.org/10.1023/A:1022476902546

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022476902546

Navigation