Annals of the Institute of Statistical Mathematics

, Volume 54, Issue 4, pp 840–847

On New Moment Estimation of Parameters of the Gamma Distribution Using its Characterization

  • Tea-Yuan Hwang
  • Ping-Huang Huang
Article
  • 190 Downloads

Abstract

In this paper, the more convenient estimators of both parameters of the gamma distribution are proposed by using its characterization, and shown to be more efficient than the maximum likelihood estimator and the moment estimator for small samples. Furthermore, the distribution of the square of the sample coefficient of variation is obtained by computer simulation for some various values of the parameters and sample size, and thus the simulated confidence interval of its shape parameter is established.

Sample coefficient of variation shape parameter moment estimator gamma distribution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bai, J., Jakeman, A. J. and McAleer, M. (1991). A new approach to maximum likelihood estimation of the three-parameter gamma and Weibull distributions, Austral. J. Statist., 33, 397–410.Google Scholar
  2. Bowman, K. O. and Shenton, L. R. (1988). Properties of estimators for the gamma distribution, Marcel Dekker, New York.Google Scholar
  3. Bowman, K. O., Shenton, L. R. and Lam, H. K. (1987). Simulation and estimation problems associated with the three-parameter gamma distribution, Comm. Statist. Simulation Comput., 16, 1147–1188.Google Scholar
  4. Cohen, A. C. and Norgaard, N. J. (1977). Progressively censored sampling in the three-parameter gamma distribution, Technometrics, 19, 333–340.Google Scholar
  5. Cohen, A. C. and Whitten, B. J. (1982). Modified moment and maximum likelihood estimators for parameters of the three-parameter gamma distribution, Comm. Statist. Simulation. Comput., 11, 197–216.Google Scholar
  6. Greenwood, J. A. and Durand, D. (1960). Aids for fitting the gamma distribution by maximum likelihood, Technometrics, 2, 55–65.Google Scholar
  7. Harter, H. L. and Moore, A. H. (1965). Maximum-likelihood estimation of the parameters of the gamma and Weibull populations from complete and from censored samples, Technometrics, 7, 639–643.Google Scholar
  8. Hu, C. Y. (1990). On signal to noise ratio statistics, Ph. D. Thesis, Institute of Statistics, National Tsing Hua University, Taiwan.Google Scholar
  9. Hwang, T. Y. (2000). On the inference of parameters of gamma distribution, Tech. Report, 89–2118-M-007–014, National Science Council, Taiwan.Google Scholar
  10. Hwang, T. Y. and Hu, C. Y. (1999). On a characterization of the gamma distribution: The independence of the sample mean and the sample coefficient of variation, Ann. Inst. Statist. Math., 51, 749–753.Google Scholar
  11. Hwang, T. Y. and Hu, C. Y. (2000). On some characterizations of population distribution, Taiwanese J. Math., 4(3), 427–437.Google Scholar
  12. Hwang, T. Y. and Lin, Y. K. (2000). On the distribution of the sample heterogeneity of molecular polymer, Tamsui Oxford Journal of Mathematical Sciences, 16(2), 133–149.Google Scholar
  13. Johnson, N. J. and Kotz, S. (1970). Continuous Univariate Distributions-1, Wiley, New York.Google Scholar
  14. Thom, H. C. S. (1958). A note on the gamma distribution, Washington, Monthly Weather Review, 86(4), 117–121, Office of Climatology, U. S. Weather, Washington D. C.Google Scholar

Copyright information

© The Institute of Statistical Mathematics 2002

Authors and Affiliations

  • Tea-Yuan Hwang
    • 1
  • Ping-Huang Huang
    • 2
  1. 1.Institute of StatisticsNational Tsing Hua UniversityHsinchuTaiwan, R.O.C
  2. 2.Department of Statistics and InsuranceAletheia UniversityTamsui, TaipeiTaiwan, R.O.C

Personalised recommendations