Czechoslovak Mathematical Journal

, Volume 49, Issue 1, pp 175–185 | Cite as

Compatible mappings of type (B) and common fixed point theorems in Saks spaces

  • H. K. Pathak
  • M. S. Khan
Article
  • 81 Downloads

Abstract

In this paper we first introduce the concept of compatible mappings of type (B) and compare these mappings with compatible mappings and compatible mappings of type (A) in Saks spaces. In the sequel, we derive some relations between these mappings. Secondly, we prove a coincidence point theorem and common fixed point theorem for compatible mappings of type (B) in Saks spaces.

Saks spaces compatible mappings of type (A) compatible mappings of type (B) coincidence common fixed points and compatible mappings 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Alexiewicz: The two-norm space. Stud. Math., special vol. (1963), 17-20.Google Scholar
  2. [2]
    Y. J. Cho and S. L. Singh: A coincidence theorem and fixed point theorems in Saks spaces. Kobe J. Math. 3 (1986), 1-6.Google Scholar
  3. [3]
    Y. J. Cho and S. L. Singh: An approach to fixed points in Saks spaces. Annales dela Soc. Scl. de Bruxelles, T. 9811-III (1984), 80-84.Google Scholar
  4. [4]
    M. L. Divicaro, B. Fisher and S. Sessa: A common fixed point theorem of Greguš type. Publ. Inst. Math. 34 (1984), 83-89.Google Scholar
  5. [5]
    B. Fisher and S. Sessa: On a common fixed point theorem of Greguš. Internat. J. Math. & Math. Sci. 9 (1986), 23-28.Google Scholar
  6. [6]
    K. Goebel: A coincidence theorem. Bull. Acad. Polon. Sci. Ser. Math. 16 (1968), 733-735.Google Scholar
  7. [7]
    M. Greguš: A fixed point theorem in Banach spaces. Boll. Un. Mat. Ital. 17a (1980), 193-198.Google Scholar
  8. [8]
    G. Jungck: Commuting maps and fixed points. Amer. Math. Monthly 83 (1976), 261-263.Google Scholar
  9. [9]
    G. Jungck: Compatible and common fixed points. Internat. J. Math. and Math. Sci. 9 (1986), 771-779.Google Scholar
  10. [10]
    G. Jungck: Compatible mappings and common fixed points (2), Internat. J. Math. and Math. Sci. 11 (1988), 285-288.Google Scholar
  11. [11]
    G. Jungck: Common fixed points of commuting and compatible maps on compacta. Proc. Amer. Math. Soc. 103 (1988), 977-983.Google Scholar
  12. [12]
    G. Jungck, P. P. Murthy and Y. J. Cho: Compatible mappings of type (A) and common fixed points. Math. Japonica 38 (1993), 381-390.Google Scholar
  13. [13]
    H. Kaneko and S. Sessa: Fixed point theorems for compatible multivalued mappings. Internat. J. Math. and Math. Sci. 12 (1989), 257-262.Google Scholar
  14. [14]
    S. M. Kang, Y. J. Cho and G. Jungck: Common fixed points of compatible mappings. Internat. J. Math. and Math. Sci. 13 (1990), 61-66.Google Scholar
  15. [15]
    S. M. Kang and Y. P. Kim: Common fixed point theorems. Math. Japonica 37 (1992), 1031-1039.Google Scholar
  16. [16]
    G. C. Kulshrestha: Single-valued mappings, multi-valued mappings and fixed point theorem in metric spaces. Doctoral Thesis, Garhwal Univ., 1976.Google Scholar
  17. [17]
    R. N. Mukherjee and V. Verma: A note on a fixed point theorem of Greguš. Math. Japonica 35 (1988), 745-749.Google Scholar
  18. [18]
    P. P. Murthy and B. K. Sharma: Some fixed point theorems on Saks spaces. Bull. Cal. Math. Soc. 84 (1992), 289-293.Google Scholar
  19. [19]
    P. P. Murphy and B. K. Sharma and Y. J. Cho: Coincidence points, common fixed points and compatible maps of type (A) on Saks spaces. Preprint.Google Scholar
  20. [20]
    S. A. Naimpally, S. L. Singh and J. H. M. Whitfield: Coincidence theorems. Preprint.Google Scholar
  21. [21]
    H. K. Pathak and M. S. Khan: Compatible mappings of type (B) and common fixed pont theorems of Greguš type. Czechoslovak Math. J. 45(120) (1995), 685-698.Google Scholar
  22. [22]
    T. Okada: Coincidence theorems on L-spaces. Math. Japonica 28 (1981), 291-295.Google Scholar
  23. [23]
    W. Orlicz: Linear operators in Saks spaces (I). Stud. Math. 11 (1950), 237-272.Google Scholar
  24. [24]
    W. Orlicz: Linear operators in Saks (II). Stud. Math. 15 (1955), 1-25.Google Scholar
  25. [25]
    W. Orlicz and V. Pták: Some results on Saks spaces. Stud. Math. 16 (1957), 16-68.Google Scholar
  26. [26]
    S. Sessa: On a weak commutativity of mappings in fixed point consideratons. Publ. Inst. Math. 32(46) (1982), 149-153.Google Scholar
  27. [27]
    S. L. Singh and Virendra: Coincidence theorems on 2-metric spaces. Indian J. Phy. Math. Sci. 2(B) (1982), 32-35.Google Scholar
  28. [28]
    S. P. Singh and B. A. Meade: On common fixed point theorems. Bull. Austral. Math. Soc. 16 (1977), 49-53.Google Scholar

Copyright information

© Mathematical Institute, Academy of Sciences of Czech Republic 1999

Authors and Affiliations

  • H. K. Pathak
    • 1
  • M. S. Khan
    • 2
  1. 1.Department of MathematicsKalyan MahavidyalayaBhilai Nagar [M.P.]India
  2. 2.Department of Mathematics and Statistics, College of ScienceSultan Qaboos UniversityAl-Khod, MuscatSultanate of Oman

Personalised recommendations