Skip to main content
Log in

Antioxidant Ascorbate Is Stabilized by NADH-Coenzyme Q10 Reductase in the Plasma Membrane

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Plasma membranes isolated from K562 cells contain an NADH-ascorbate free radical reductase activity and intact cells show the capacity to reduce the rate of chemical oxidation of ascorbate leading to its stabilization at the extracellular space. Both activities are stimulated by CoQ10 and inhibited by capsaicin and dicumarol. A 34-kDa protein (p34) isolated from pig liver plasma membrane, displaying NADH-CoQ10 reductase activity and its internal sequence being identical to cytochrome b 5 reductase, increases the NADH-ascorbate free radical reductase activity of K562 cells plasma membranes. Also, the incorporation of this protein into K562 cells by p34-reconstituted liposomes also increased the stabilization of ascorbate by these cells. TPA-induced differentiation of K562 cells increases ascorbate stabilization by whole cells and both NADH-ascorbate free radical reductase and CoQ10 content in isolated plasma membranes. We show here the role of CoQ10 and its NADH-dependent reductase in both plasma membrane NADH-ascorbate free radical reductase and ascorbate stabilization by K562 cells. These data support the idea that besides intracellular cytochrome b 5-dependent ascorbate regeneration, the extracellular stabilization of ascorbate is mediated by CoQ10 and its NADH-dependent reductase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Alcaín, F. J., Burón, M. I., Villalba, J. M., and Navas, P. (1991). Biochim. Biophys. Acta 1073, 380–385.

    PubMed  Google Scholar 

  • Beyer, R. E. (1994). J. Bioenerg. Biomembr 26, 349–358.

    PubMed  Google Scholar 

  • Briviba, K., and Sies, H. (1994). In Natural Antioxidants in Human Health and Disease (Frei, B., ed), Academic Press, London, pp. 107–128.

    Google Scholar 

  • Buettner, G. R. (1993). Arch. Biochem. Biophys. 300, 535–543.

    PubMed  Google Scholar 

  • Burón, M. I., Rodríguez-Aguilera, J. C., Alcain, F. J., and Navas, P. (1993). Biochem. Biophys. Res. Commun. 192, 439–445.

    PubMed  Google Scholar 

  • Coassin, M., Tomasi, A., Vannini, V., and Ursini, F. (1991). Arch. Biochem. Biophys. 290, 458–462.

    PubMed  Google Scholar 

  • Crane, F. L., Löw, H., and Clark, M. G. (1985). In The Enzymes of Biological Membranes, Vol. 4 (Martonosi, A. N., ed). Plenum Press, New York, pp. 465–510.

    Google Scholar 

  • D'Arrigo, A., Manera, E., Longhi, R., and Borgese, N. (1993). J. Biol. Chem. 268, 2802–2808.

    PubMed  Google Scholar 

  • Fibach, E., Treves, A., and Rachmilewitz, E. A. (1983). Cancer Res. 43, 4136–4141.

    PubMed  Google Scholar 

  • Frei, B. (1994). Am J. Med. 97, 5S–13S.

    PubMed  Google Scholar 

  • Geiss, D., and Schulze, H. U. (1975). FEBS Lett. 60, 374–379.

    PubMed  Google Scholar 

  • Hossain, M. H., and Asada, K. (1985). J. Biol. Chem. 260, 12920–12926.

    PubMed  Google Scholar 

  • Ito, A., Hayashi, S.-I., and Yoshida, T. (1981). Biochem Biophys. Res. Commun. 101, 591–598.

    PubMed  Google Scholar 

  • Kant, J. A., and Steck, T. L. (1972). Nature 240, 26–28.

    Google Scholar 

  • Kashiwamata, S., Goto, S., Semba, R. K., and Suzuki, F. N. (1979). J. Biol. Chem. 254, 4577–4584.

    PubMed  Google Scholar 

  • Kobayashi, K., Harada, Y., and Hayashi, K. (1991) Biochemistry 30, 8310–8315.

    PubMed  Google Scholar 

  • Lederer, F., Chrir, R., Guiard, B., Cortial, B., and Ito, A. (1983). Eur. J. Biochem. 132, 95–102.

    PubMed  Google Scholar 

  • Lenaz, G., Bovina, C., Castellucio, C., Cavazzoni, M., Estornell, E., Huertas, J. R., Pich, M. M., Pallotti, F., Castelli, G. P., and Rauchova, H. (1995). Protoplasma 184, 50–62.

    Google Scholar 

  • Mahler, H. R. (1955). Methods Enzymol. 2, 688–693.

    Google Scholar 

  • Medina, M. A. del Castillo-Olivares, A., and Schweigerer, L. (1992). FEBS Lett. 311, 99–101.

    PubMed  Google Scholar 

  • Meister, A. (1994). J. Biol. Chem. 269, 9397–9400.

    PubMed  Google Scholar 

  • Minetti, M., Forte, T., Sotiani, M., Quaresima, V., Menditto, A., and Ferrari, M. (1992). Biochem. J. 282, 459–465.

    PubMed  Google Scholar 

  • Navarro, F., Villalba, J. M., Crane, F. L., MacKellar, W. C., and Navas, P. (1995). Biochem. Biophys. Res. Commun. 212, 138–143.

    PubMed  Google Scholar 

  • Navas, P., Nowack, D. D., and Morré, D. J. (1989). Cancer Res. 49, 2147–2156.

    PubMed  Google Scholar 

  • Navas, P., Alcaín, F. J., Burón, M. I., Rodríguez-Aguilera, J. C., Villalba, J. M., Morré, D. M., and Morré, D. J. (1992). FEBS Lett. 299, 223–226.

    PubMed  Google Scholar 

  • Norling, B., Glazek, E., Nelson, B. D., and Ernster, L. (1974). Eur. J. Biochem. 47, 475–482.

    PubMed  Google Scholar 

  • Palmiter, R. D. (1969). Biochim. Biophys. Acta 178, 35–46.

    PubMed  Google Scholar 

  • Pennington, R. J. (1961). Biochem. J. 80, 649–654.

    PubMed  Google Scholar 

  • Pethig, R., Gascoyne, P. R. C., McLaughlin, J. A., and Szent-Györgyi, A. (1985). Proc. Natl. Acad. Sci. USA 82, 1439–1442.

    PubMed  Google Scholar 

  • Remacle, J. (1980). Biochim. Biophys. Acta 597, 564–576.

    PubMed  Google Scholar 

  • Rodríguez-Aguilera, J. C., and Navas, P. (1994). J. Bioenerg. Biomembr. 26, 379–384.

    PubMed  Google Scholar 

  • Rodríguez-Aguilera, J. C., Navarro, F., Arroyo, A., Villalba, J. M., and Navas, P. (1993). J. Biol. Chem. 268, 26346–26349.

    PubMed  Google Scholar 

  • Rose, R. C., and Bode, A. M. (1993). FASEB J. 7, 1135–1142.

    PubMed  Google Scholar 

  • Schulze, H. U., and Staudinger. H.(1971). Hoppe-Seyler's Z. Physiol. Chem. 352, 1659–1674.

    PubMed  Google Scholar 

  • Shirabe, K., Landi, M. T., Takeshita, M., Uziel, G., Fedrizzi, E., and Borgese, N. (1995). Am. J. Hum. Genet. 57, 302–310.

    PubMed  Google Scholar 

  • Storrie, B., and Madden, E. A. (1990). Methods Enzymol. 182, 203–235.

    PubMed  Google Scholar 

  • Stoscheck, C. M. (1990). Methods Enzymol. 180, 50–68.

    Google Scholar 

  • Sun, I. L., Sun, E. E., Crane, F. L., Morré, D. J., Lindgren, A., and Löw, H. (1992). Proc. Natl. Acad. Sci. USA 89, 11126–11130.

    PubMed  Google Scholar 

  • Villalba, J. M., Canalejo, A., Rodriguez-Aguilera, J. C., Burón, M. I., Morré, D. J., and Navas, P. (1993). J. Bioenerg. Biomembr. 25, 411–417.

    PubMed  Google Scholar 

  • Villalba, J. M., Navarro, F., Córdoba, F., Serrano, A., Arroyo, A., Crane, F. L., and Navas, P. (1995). Proc. Natl. Acad. Sci. USA 92, 4887–4891.

    PubMed  Google Scholar 

  • Winkler, B. S. (1987). Biochim. Biophys. Acta 925, 258–264.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gómez-Díaz, C., Rodríguez-Aguilera, J.C., Barroso, M.P. et al. Antioxidant Ascorbate Is Stabilized by NADH-Coenzyme Q10 Reductase in the Plasma Membrane. J Bioenerg Biomembr 29, 251–257 (1997). https://doi.org/10.1023/A:1022410127104

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022410127104

Navigation