Skip to main content
Log in

Uniform Estimates of Remainders in Asymptotic Expansions of Solutions to the Problem on Eigenoscillations of a Piezoelectric Plate

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

A method for obtaining estimates of asymptotic remainders is presented. The constants in estimates are independent of the number of the eigenvalue, as well as of the small parameter h, the thickness of the plate. Owing to an information about connections between frequencies of eigenoscillations of the three-dimensional plates and its two-dimensional model obtained under various restrictions to h, it is possible to divide the asymptotics in collective and individual ones. Only in the case of the individual asymptotics, i.e., under rigid restrictions on h, it is possible to construct asymptotic expansions for the corresponding eigenvectors. We consider arbitrarily anizotropic composed cylindrical plates in whcih piezoeffects can dominate along longitudinal directions, as well as along transverse directions. The connectedness of elastic and electric fields Implies the appearance of a nontrivial dissipative components of the operator of the problem under consideration, but its spectrum remains real and positive. Bibliography: 43 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. G. Ciarlet and S. Kesavan, “Two dimensional approximations of three dimensional eigenvalues in plate theory,” Comput.Methods Appl.Mech.Engrg. 26, 149–172(1980).

    Google Scholar 

  2. S. Zorin and S. A. Nazarov, “Edge effect in the bending of a thin three-dimensional plate,” Prikl.Mat.Mekh., 53, No. 4, 642–650(1989); English transl.: J.Appl.Math.Mech., 53, No. 4, 500–507 (1989).

    Google Scholar 

  3. M. Dauge, I. Djurdjevic, E. Faou, and A. R¨ossle, “Eigenmode asymptotics in thin elastic plates,” J.Math.Pures Appl 78, No. 9, 925–964 (1999).

    Google Scholar 

  4. S. A. Nazarovm “On asymptotics of the spectrum of a problem in elasticity,” Sib.Mat.Zh. 411, No.4, 895-912(2000).

    Google Scholar 

  5. S. A. Nazarov, Asymptotic Theory of thin Plates and Rods.I.Reduction of Dimension and Integral Estimates [in Russian], Novosibirsk: Scientific Books Publisher (IDMI), 2001.

    Google Scholar 

  6. S. A. Nazarov, “Structure of solutions to elliptic boundary-valued problems in thin domains,” [in Russian] Vestnik LGU No. 7, 65–68(1982).

    Google Scholar 

  7. S. A. Nazarov, “General scheme for averaging selfadjoint elliptic systems in multidimensional domains, in-cluding thin ones,” Algebra Anal., 7, No. 5 1–92(1995); English transl.: St. Petersburg Math. J. 7 (1996),no. 5, 681–748.

    Google Scholar 

  8. S. A. Nazarov, “Polynomial property of selfadjoint elliptic boundary-value problems and algebraic description of their attributes,” [in Russian]] Uspekhi Mat.Nauk, 54, No. 5, 77–142 (1999).

    Google Scholar 

  9. W. G. Mazja, S. A. Nazarov, and B. A. Plamenevskii, Asymptotische theorie elliptischer randwertaufgaben in singular gestrorten Gebienten. Bd. 2. Berlin: Akad.–Verlag, Berlin (1991); English transl.: Asymptotic Theory of Elliptic Boundary-Value Problems in Singularly Perturbed Domain. Vol. 2. Basel–Boston–Berlin: Birkhauser Verlag, (2000).

    Google Scholar 

  10. S. A. Nazarov, “Selfadjoint elliptic boundary-value problems. The polynomial property and formally positive operators,” Problemy Mat.Anal., 16, 167–192, (1997); English transl.: J.Math.Sci.

    Google Scholar 

  11. S. A. Nazarov, “Non-selfadjoint elliptic problems with polynomial property in domains with cylindrical exits at infinity” [in Russian], Zap.Nauchn.Semin.POMI, 249, 212–231(1997); English transl.: J.Math.Sci.

    Google Scholar 

  12. Ya. S. Podstrigach, Ya. I. Burak, and P. F. Kondrat, Magnetictermo-Elasticity of Electroconducting Bodies, Kiev: Naukova Dumka (1982).

    Google Scholar 

  13. V. Z. Parton, B. A. Kudryavtsev, Electomagneto-Elasticity of Piezoelectric and Electroconductive Bodies [in Russian], Moscow: Nauka (1988).

    Google Scholar 

  14. B. A. Shoikhet, “On asymptotically exact equations of thin plates of complex structure,” J.Appl.Math.Mech., 37, 867–877, (1973).

    Google Scholar 

  15. S. A. Nazarov, “Korn inequalities that are asymptotically exact for thin domains” [in Russian], Vestn.St.-PetersburgUniv., No. 8, 19–24 (1992); English transl.: Vestnik St.-Petersburg Univ.Mat.Meh.Astronom., 25, No. 2, 18–22 (1992).

    Google Scholar 

  16. V. A. Kondrat'ev and O. A. Oleinik, “On constants in the Korn inequalities for thin domains” [in Russian], Uspekhi Mat.Nauk, 45, No. 4, 129–130 (1990).

    Google Scholar 

  17. N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in a Hilbert Space [in Russian], Moscow: Nauka (1966).

    Google Scholar 

  18. P. G. Ciarlet, Mathematical Elasticity.Vol.II.Theory of Plates, Amsterdam: North-Holland (1997).

    Google Scholar 

  19. S. A. Nazarov, “Estimating the convergence rate for eigenfrequencies of anisotropic plates with variable thickness,” C.R. Acad.Sci.Paris.S´ er.II. (2002) [to appear]

  20. W. G. Mazja, S. A. Nazarov, and B. A. Plamenevskii, “On singularities of solutions to the Dirichlet problems in the exterior of a thin cone” [in Russian], Mat.Sb., 122, No. 4, 435–456 (1983).

    Google Scholar 

  21. S. A. Nazarov, “Interaction of concentrated masses in a harmonically oscillating spatial body with Neumann boundary conditions,” RAIRO Model.Math.Anal.Numer. 27, No. 6, 777–799 (1993).

    Google Scholar 

  22. S. A. Nazarov, “Two term asymptotics of solutions to spectral problems with singular perturbations” [in Russian], Mat.Sb., 181, No. 3, 291–320 (1990).

    Google Scholar 

  23. I. V. Kamotskii and S. A. Nazarov, “Spectral problems in singularly perturbed domains and selfadjoint ex-tensions of differential operators” [in Russian], Trudy St. Petersburg. Mat. Obsc. 6, 151–212 (1998); English transl.: Transl.Amer.Math.Soc. Ser. 2, 199, Amer. Math. Soc., Providence, RI, 127–182 (2000).

    Google Scholar 

  24. S. A. Nazarov, “Justification of asymptotic expansions of eigenvalues of non-selfadjoint singularly perturbed elliptic boundary-value problems” [in Russian], Mat.Sb., 129, No. 3, 307–337 (1986).

    Google Scholar 

  25. S. A. Nazarov, “On singularities of the gradient of a solution to the Neumann problem at a vertex of a thin cone” [in Russian], Mat.Zametki, 42, No. 1, 79–93 (1987).

    Google Scholar 

  26. S. A. Nazarov, “Asymptotics of eigenvalues of the Dirichlet problem in a thin domain” [in Russian], Izv.Vuzov.Matematika, No. 11, 54–64 (1987).

    Google Scholar 

  27. I. V. Kamotskii and S. A. Nazarov “On eigenfunctions located in a neighborhood of the edge of a thin do-main”[in Russian], Problemy Mat.Anal., 19, 105–148 (1999). English transl.: J.Math.Sci.

    Google Scholar 

  28. I. Roitberg, D. Vassiliev, and T. Weidl, “Edge resonance in an elastic semi-strip,” Q.J. Mech.Appl.Math., 51, No. 1. 1–13 (1998).

    Google Scholar 

  29. V. L. Berdichevskii, “High-frequency long wavelength oscillations of plates” [in Russian], Dokl.AN SSSR, 236, No. 6, 1319–1322 (1997).

    Google Scholar 

  30. V. L. Berdichevskii, Variational Principles of Continuum Mechanics [in Russian], Moscow: Nauka (1983).

    Google Scholar 

  31. E. Canon and M. Lenczner, “Models of elastic plates with piezoelectric inclusions”, Math.Comput.Model., 26, No.5, 79–106 (1997).

    Google Scholar 

  32. S. A. Nazarov “Asymptotic analysis of an arbitrarily anisotropic plate of variable thickness (sloping shells)”[in Russian], Mat.Sb. 191, No. 7, 129–159 (2000).

    Google Scholar 

  33. O. V. Motygin, S. A. Nazarov, “Justification of the Kirchhoff hypotheses and error estimation for two-dimensional models of anisotropic and inhomogeneous plates, including laminated plates,” IMA J.Appl.Math., 65, 1–28 (2000).

    Google Scholar 

  34. D. Caillerie, “Thin elastic and periodic plates,” Math.Meth.Appl.Sci., 2, 251–270 (1984).

    Google Scholar 

  35. J. Nečas, Les m´ ethodes in th´ eorie des ´ equations elliptiques, Paris-Prague: Masson-Academia (1967).

    Google Scholar 

  36. S. N. Leora, S. A. Nazarov, and A. V. Proskura, “Derivation of limiting equations for elliptic problems in thin domains using computers” [in Russian], Zh.Vych.Mat.i Mat.Fiz., 26, No. 7, 1032–1048 (1986); English transl.: USSR Comput.Math.Math.Phys., 26, No. 4, 47–58 (1986).

    Google Scholar 

  37. O. V. Motygin and S. A. Nazarov, “A suitable for computer realization procedure of constructing boundary layers in the theory of thin plates” [in Russian], Zh.Vych.Mat.Mat.Phys., 4-0, No. 2, 274–285 (2000).

    Google Scholar 

  38. O. A. Ladyzhenskaya, Boundary-Value Problems of Mathematical Physics [in Russian], Moscow: Nauka (1973).

    Google Scholar 

  39. S. Agmon, A. Douglis, and L. Nirenberg, “Estimates near the boundary for solutions of elliptic differential equations satisfying general boundary conditions. 2,” Comm.Pure Appl.Math., 17, 35–92 (1964).

    Google Scholar 

  40. J.-L. Lions and E. Magenes, Nonhomogeneous Boundary-Value Problems and Applications, Berlin: Springer-Verlag (1972).

    Google Scholar 

  41. Ya. A. Roitberg and Z. G. Sheftel', “General boundary-value problems for elliptic systems and their applications,” [in Russian] Dokl.AN SSSR, 148, No. 5, 1034–1037 (1963).

    Google Scholar 

  42. S. A. Nazarov, “Asymptotic expansions at infinity of solutions to the elasticity theory problem in a layer” [in Russian], Tr.Mosk.Mat.O.va, 60, 3–97 (1998); English transl.: Trans.Moscow Math.Soc., 60, 1–85 (1999).

    Google Scholar 

  43. T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin–Heidelberg–New York (1966).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nazarov, S.A. Uniform Estimates of Remainders in Asymptotic Expansions of Solutions to the Problem on Eigenoscillations of a Piezoelectric Plate. Journal of Mathematical Sciences 114, 1657–1725 (2003). https://doi.org/10.1023/A:1022364812273

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022364812273

Keywords

Navigation