Skip to main content
Log in

Do Neutron Star Gravitational Waves Carry Superfluid Imprints?

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Isolated neutron stars undergoing non-radial oscillations are expected to emit gravitational waves in the kilohertz frequency range. To date, radio astronomers have located about 1,300 pulsars, and can estimate that there are about 2×108 neutron stars in the galaxy. Many of these are surely old and cold enough that their interiors will contain matter in the superfluid or superconducting state. In fact, the so-called glitch phenomenon in pulsars (a sudden spin-up of the pulsar's crust) is best described by assuming the presence of superfluid neutrons and superconducting protons in the inner crusts and cores of the pulsars. Recently there has been much progress on modelling the dynamics of superfluid neutron stars in both the Newtonian and general relativistic regimes. We will discuss some of the main results of this recent work, perhaps the most important being that superfluidity should affect the gravitational waves from neutron stars (emitted, for instance, during a glitch) by modifying both the rotational properties of the background star and the modes of oscillation of the perturbed configuration. Finally, we present an analysis of the so-called zero-frequency subspace (i.e., the space of time-independent perturbations) and determine that it is spanned by two sets of polar (or spheroidal) and two sets of axial (or toroidal) degenerate perturbations for the general relativistic system. As in the Newtonian case, the polar perturbations are the g-modes which are missing from the pulsation spectrum of a non-rotating configuration, and the axial perturbations should lead to two sets of r-modes when the degeneracy of the frequencies is broken by having the background rotate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. D. R. Lorimer, “Binary and millisecond pulsars at the new millenium,” Living Reviews. Relativity 4, 5 (2001). [Online article]: cited on 15 Aug 2001 http://www.livingreviews. org/Articles/Volume4/2001-5lorimer/.

    Google Scholar 

  2. U. Lombardo, in Nuclear Methods and Nuclear Equations of State, M. Baldo, ed. (World Scientific, Singapore, 1999), pp. 458–510.

    Google Scholar 

  3. U. Lombardo and H.-J. Schulze, preprint LANL archive astro-ph/0012209.

  4. V. Radhakrishnan and R. N. Manchester, Nature 244, 228 (1969).

    Google Scholar 

  5. A. G. Lyne, in Pulsars as Physics Laboratories, R. D. Blandford, A. Hewish, A. G. Lyne, and L. Mestel, eds. (Oxford University Press, New York, 1993).

    Google Scholar 

  6. P. E. Reichley and G. S. Downs, Nature 222, 229 (1969).

    Google Scholar 

  7. G. Baym, C. Pethick, D. Pines, and M. Ruderman, Nature 224, 872 (1969).

    Google Scholar 

  8. P. W. Anderson and N. Itoh, Nature 256, 25 (1975).

    Google Scholar 

  9. M. A. Alpar, P. W. Anderson, D. Pines, and J. Shaham, Ap. J. 276, 325 (1984).

    Google Scholar 

  10. M. A. Alpar, P. W. Anderson, D. Pines, and J. Shaham, Ap. J. 278, 791 (1984).

    Google Scholar 

  11. J. S. Tsakadze and S. J. Tsakadze, J. Low Temp. Phys. 39, 649 (1980).

    Google Scholar 

  12. D. R. Tilley and J. Tilley, Superfluidity and Superconductivity, 2nd edn. (Adam Hilger, Bristol, 1986).

    Google Scholar 

  13. D. L. Goodstein, States of Matter (Dover, New York, 1985).

    Google Scholar 

  14. J. A. Sauls, in Timing Neutron Stars, H. Ögelman and E. P. J. van den Heuvel, eds. (Kluwer Academic, Dordrecht, 1989), pp. 457–490.

    Google Scholar 

  15. A. B. Migdal, Nucl. Phys. 13, 655 (1959).

    Google Scholar 

  16. M. Hoffberg, A. E. Glassgold, R. W. Richardson, and M. Ruderman, Phys. Rev. Lett. 24, 175 (1970).

    Google Scholar 

  17. M. Alpar, S. A. Langer, and J. A. Sauls, Ap. J. 282, 533 (1984).

    Google Scholar 

  18. M. A. Alpar and J. A. Sauls, Ap. J. 327, 723 (1988).

    Google Scholar 

  19. A. F. Andreev and E. P. Bashkin, Sov. Phys. JETP 42(1), 164 (1975).

    Google Scholar 

  20. G. A. Vardanyan and D. M. Sedrakian, Soviet Physics-JETP 54, 919 (1981).

    Google Scholar 

  21. G. Mendell and L. Lindblom, Ann. Phys. 205, 110 (1991).

    Google Scholar 

  22. G. Mendell, Ap. J. 380, 515 (1991); 530 (1991).

    Google Scholar 

  23. L. Lindblom and G. Mendell, Ap. J. 421, 689 (1994).

    Google Scholar 

  24. L. Lindblom and G. Mendell, Ap. J. 444, 804 (1995).

    Google Scholar 

  25. R. Prix, in preparation (2002).

  26. B. Carter, in A Random Walk in General Relativity and Cosmology, N. Dadhich, J. Krishna Rao, J. V. Narlikar, and C. V. Vishveshwar, eds. (IAGRG, 1985), pp. 48.

  27. B. Carter, in Lecture Notes in Mathematics 1385: Relativistic Fluid Dynamics, A. Anile and Y. Choquet-Bruhat (Springer, Heidelberg, 1989), pp. 1–64.

    Google Scholar 

  28. G. L. Comer and D. Langlois, Class. and Quant. Grav. 10, 2317 (1993).

    Google Scholar 

  29. G. L. Comer and D. Langlois, Class. and Quant. Grav. 11, 709 (1994).

    Google Scholar 

  30. B. Carter and D. Langlois, Phys. Rev. D 51, 5855 (1995).

    Google Scholar 

  31. B. Carter and D. Langlois, Nucl. Phys. B 454, 402 (1998).

    Google Scholar 

  32. B. Carter and D. Langlois, Nucl. Phys. B 531, 478 (1998).

    Google Scholar 

  33. D. Langlois, A. Sedrakian, and B. Carter, Mon. Not. R. Astron. Soc. 297, 1189 (1998).

    Google Scholar 

  34. B. Carter, D. Langlois, and D. M. Sedrakian, Astron. Astrophys. 361, 795 (2000).

    Google Scholar 

  35. R. Prix, Phys. Rev. D 62, 103005 (2000).

    Google Scholar 

  36. N. Andersson, G. L. Comer, and D. Langlois, Phys. Rev. D 66, 104002 (2002); also available as preprint LANL archive gr-qc/0203039.

    Google Scholar 

  37. N. Andersson, Ap. J. 502, 708 (1998).

    Google Scholar 

  38. J. L. Friedman and S. M. Morsink, Ap. J. 502, 714 (1998).

    Google Scholar 

  39. S. Chandrasekhar, Phys. Rev. Lett. 24, 611 (1970).

    Google Scholar 

  40. J. L. Friedman and B. F. Schutz, Ap. J. 221, 937 (1978); 222, 281 (1978).

    Google Scholar 

  41. J. L. Friedman, Commun. Math. Phys. 62, 247 1978.

    Google Scholar 

  42. L. Lindblom, B. Owen, and S. M. Morsink, Phys. Rev. Lett. 80, 4843 (1998).

    Google Scholar 

  43. B. J. Owen, L. Lindblom, C. Cutler, B. F. Schutz, A. Vecchio, and N. Andersson, Phys. Rev. D 58, 084020 (1998).

    Google Scholar 

  44. N. Andersson, K. D. Kokkotas, and B. F. Schutz, Ap. J. 510, 846 (1999).

    Google Scholar 

  45. L. Lindblom and G. Mendell, Phys. Rev. D 61, 104003 (2000).

    Google Scholar 

  46. N. Andersson and G. L. Comer, Mon. Not. R. Astron. Soc. 328, 1129 (2001).

    Google Scholar 

  47. R. I. Epstein, Ap. J. 333, 880 (1988).

    Google Scholar 

  48. N. Andersson and G. L. Comer, Class. and Quant. Grav. 18, 969 (2001).

    Google Scholar 

  49. R. Prix, G. L. Comer, and N. Andersson, Astron. Astrophys. 381, 178 (2002).

    Google Scholar 

  50. P. Haensel, Astron. Astrophys. 262, 131 (1992).

    Google Scholar 

  51. G. L. Comer, D. Langlois, and L. M. Lin, Phys. Rev. D 60, 104025 (1999).

    Google Scholar 

  52. S. J. Putterman, Superfluid Hydrodynamics (North-Holland, Amsterdam, 1974).

    Google Scholar 

  53. A. Akmal, V. R. Panharipande, and D. G. Ravenhall, Phys. Rev. C 58, 1804 (1998).

    Google Scholar 

  54. D. Pines and P. Nozières, The Theory of Quantum Liquids, Vol. 1 (Benjamin, New York, 1966).

    Google Scholar 

  55. M. Borumand, R. Joynt, and W. Kluźniak, Phys. Rev. C 54, 2745 (1996).

    Google Scholar 

  56. O. Sjöberg, Nucl. Phys. A 265, 511 (1976).

    Google Scholar 

  57. B. Carter, J. Math. Phys. 10, 70 (1969).

    Google Scholar 

  58. B. Carter, Comm. Math. Phys. 17, 233 (1970).

    Google Scholar 

  59. S. Bonazzola, E. Gourgoulhon, M. Salgado, and J.-A. Marck, Astron. Astrophys. 278, 421 (1993).

    Google Scholar 

  60. N. Stergioulas, “Rotating Stars in Relativity,” Living Reviews. Relativity 1 (1998). 8. [Online article]: cited on 15 Aug 2001 http://www.livingreviews.org/Articles/Volumel/ 1998-8stergio/.

    Google Scholar 

  61. E. Gourgoulhon, P. Haensel, R. Livine, E. Paluch, S. Bonazzola, and J.-A. Marck, Astron. Astrophys. 349, 851 (1999).

    Google Scholar 

  62. R. Prix, Astron. Astrophys. 352, 623 (1999).

    Google Scholar 

  63. J. B. Hartle, Ap. J. 150, 1005 (1967).

    Google Scholar 

  64. J. B. Hartle and K. S. Thorne, Ap. J. 163, 807 (1968).

    Google Scholar 

  65. S. Chandrasekar, Mon. Not. R. Astron. Soc. 93, 390 (1933).

    Google Scholar 

  66. E. A. Milne, Mon. Not. R. Astron. Soc. 83, 118 (1923).

    Google Scholar 

  67. M. Prakash, J. M. Lattimer, and T. L. Ainsworth, Phys. Rev. Lett. 61, 2518 (1988).

    Google Scholar 

  68. J. Font, T. Goodale, S. Iyer, M. Miller, L. Rezolla, E. Seidel, N. Stergioulas, W. Suen, and M. Tobias, Phys. Rev. D 65, 084024 (2002).

    Google Scholar 

  69. K. H. Lockitch and J. L. Friedman, Ap. J. 521, 764 (1999).

    Google Scholar 

  70. K. H. Lockitch, N. Andersson, and J. L. Friedman, Phys. Rev. D 63, 024019 (2001).

    Google Scholar 

  71. U. Lee, Astron. Astrophys. 303, 515 (1995).

    Google Scholar 

  72. A. Sedrakian and I. Wasserman, Phys. Rev. D 63, 024016 (2000).

    Google Scholar 

  73. R. Prix and M. Rieutord, preprint LANL archive astro-ph/0204520.

  74. P. N. McDermott, H. M. Van Horn, and C. J. Hansen, Ap. J. 325, 725 (1988).

    Google Scholar 

  75. A. Reisenegger and P. Goldreich, Ap. J. 395, 240 (1992).

    Google Scholar 

  76. W. Unno, Y. Osaki, H. Ando, and H. Shibahashi, Nonradial Oscillations of Stars (University of Tokyo Press, 1989).

  77. N. Andersson and G. L. Comer, Phys. Rev. Lett. 24, 241101 (2001).

    Google Scholar 

  78. V. V. Khodel, V. A. Khodel, and J. W. Clark, Nuc. Phys. A 679, 827 (2001).

    Google Scholar 

  79. T. Regge and J. A. Wheeler, Phys. Rev. 108, 1063 (1957).

    Google Scholar 

  80. S. Chandrasekhar, Ap. J. 140, 417 (1964).

    Google Scholar 

  81. K. S. Thorne and A. Campolattaro, Ap. J. 149, 591 (1967).

    Google Scholar 

  82. R. Price and K. S. Thorne, Ap. J. 155, 163 (1969).

    Google Scholar 

  83. K. S. Thorne, Ap. J. 158, 1 (1969).

    Google Scholar 

  84. K. S. Thorne, Ap. J. 158, 997 (1969).

    Google Scholar 

  85. A. Campolattaro and K. S. Thorne, Ap. J. 159, 847 (1970).

    Google Scholar 

  86. L. Lindblom and S. L. Detweiler, Ap. J. Supplement Series 53, 73 (1983).

    Google Scholar 

  87. S. L. Detweiler and L. Lindblom, Ap. J. 292, 12 (1985).

    Google Scholar 

  88. K. D. Kokkotas and B. F. Schutz, Mon. Not. R. Astron. Soc. 268, 119 (1992).

    Google Scholar 

  89. N. Andersson, K. D. Kokkotas, and B. F. Schutz, Mon. Not. R. Astron. Soc. 280, 1230 (1996).

    Google Scholar 

  90. Proceedings of the SOHO 10/GONG 2000 Workshop: Helio-and asteroseismology at the dawn of the millennium, A. Wilson, ed. (ESA Publications Division, 2001).

  91. N. Andersson and K. D. Kokkotas, Phys. Rev. Lett. 77, 4134 (1996).

    Google Scholar 

  92. N. Andersson and K. D. Kokkotas, Mon. Not. R. Astron. Soc. 299, 1059 (1998).

    Google Scholar 

  93. K. D. Kokkotas, T. Apostolatos, and N. Andersson, Mon. Not. R. Astron. Soc. 302, 307 (2001).

    Google Scholar 

  94. P. R. Brady, T. Creighton, C. Cutler, and B. F. Schutz, Phys. Rev. D 57, 2101 (1998).

    Google Scholar 

  95. L. M. Franco, B. Link, and R. I. Epstein, Ap. J. 543, 987 (2000).

    Google Scholar 

  96. D. Hartmann, K. Hurley, and M. Niel, Ap. J. 387, 622 (1992).

    Google Scholar 

  97. I. H. Stairs, A. G. Lyne, and S. L. Shemar, Nature 406, 484 (2000). 1942 Comer

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Comer, G.L. Do Neutron Star Gravitational Waves Carry Superfluid Imprints?. Foundations of Physics 32, 1903–1942 (2002). https://doi.org/10.1023/A:1022322801696

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022322801696

Navigation