Skip to main content
Log in

Sharp Estimates for Deviations of Linear Approximation Methods for Periodic Functions by Linear Combinations of Moduli of Continuity of Different Order

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

Estimates for deviations are established for a large class of linear methods of approximation of periodic functions by linear combinations of moduli of continuity of different orders. These estimates are sharp in the sense of constants in the uniform and integral metrics. In particular, the following assertion concerning approximation by splines is proved: Suppose that \(n,r,\mu \in \mathbb{N},\;\mu \geqslant r + {\text{1,}}\;r\) is odd, \(1 \leqslant p \leqslant \infty ,\;f \in W_p^{\left( r \right)}\). Then

$$\begin{gathered}\left\| {f - X_{n,r,\mu } \left( f \right)} \right\|_p \leqslant \left( {\frac{{\pi }}{n}} \right)^r \left\{ {\frac{{A_{r,0} }}{2}{\omega }_{1} \left( {f^{\left( r \right)} ,\frac{{\pi }}{n}} \right)_p + \sum\limits_{{\nu } = 1}^{\mu - r - 1} {A_{r,{\nu }} {\omega }_{\nu } \left( {f^{\left( r \right)} ,\frac{{\pi }}{n}} \right)_p } } \right\} \hfill \\ \quad \quad \quad \quad \quad \quad {\kern 1pt} \quad + \left( {\frac{{\pi }}{n}} \right)^r \left( {\frac{{K_r }}{{{\pi }^r }} - \sum\limits_{{\nu } = 1}^{\mu - r - 1} {2^{\nu } A_{r,{\nu }} } } \right)2^{r - \mu } {\omega }_{\mu - r} \left( {f^{\left( r \right)} ,\frac{{\pi }}{n}} \right)_p ; \hfill \\ \end{gathered}$$

moreover, for \(p = 1,\infty\) it is impossible to decrease the constants on \(W_p^{\left( r \right)}\). Here, \(K_r = \frac{4}{{\pi }}\sum\limits_{l = 0}^\infty {\frac{{\left( { - 1} \right)^{l\left( {r + 1} \right)} }}{{\left( {2l + 1} \right)^{r + 1} }},A_{r,{\nu }} }\) are some explicitly constructed constants, \({\omega }_{\nu } \left( {f,h} \right)_p\) is the modulus of continuity of order r for the function f, and \(X_{n,r,\mu }\) are explicitly constructed linear operators with the values in the space of periodic splines of degree \(\mu\) of minimal defect with 2n equidistant interpolation points. This assertion implies the sharp Jackson-type inequality

$$\left\| {f - X_{n,r,\mu } \left( f \right)} \right\|_p \leqslant \frac{{K_r }}{{2n^r }}{\omega }_{1} \left( {f^{\left( r \right)} ,\frac{{\pi }}{n}} \right)_p .$$

. Bibliography: 17 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Favard, “Sur les meilleurs proc´ ed´ es d'approximation de certaines classes des fonctions par des polynomes trigonom´ etriques,” Bull.Sci.Math. 61 209–224, 243–256 (1937).

    Google Scholar 

  2. N. Akhiezer and M. Krein, “On the best approximation of differential periodic functions by trigonometric sums,” [in Russian] Dokl.AN SSSR 15, 107–112 (1937).

    Google Scholar 

  3. A. A. Ligun, “On exact constants in approximations of differential periodic functions” [in Russian] Mat.Zametki, 14, No. 1, 21-30 (1973).

    Google Scholar 

  4. V. V. Zhuk, “On some sharp inequalities between the best approximations and moduli of continuity,” [in Russian] Sib.Mat.Zh. 12, No. 6, 1283–1297 (1971).

    Google Scholar 

  5. V. V. Zhuk, “On constants in direct theorems of approximation theory for differentiable functions.” [in Russian], Vestn.Leningr.Univer., No. 19, 51–57(1976).

    Google Scholar 

  6. V. V. Zhuk, “On some exact inequalities between functionals given on sets of periodic functions and moduli of continuity,” [in Russian], Vestn.Leningr.Univer., No. 7, 29–34(1975).

    Google Scholar 

  7. V. V. Zhuk, “Some exact inequalities between the best approximations and moduli of continuity of higher order,” [in Russian], Mat.Zametki, 21, No. 2, 281–288(1977).

    Google Scholar 

  8. V. V. Zhuk, “Some exact inequalities for seminorms given on spaces of periodic functions,” [in Russian], Mat.Zametki, 21, No. 6, 789–798(1977).

    Google Scholar 

  9. V. M. Tikhomirov, “The best methods of approximation and interpolation of differentiable functions in the space C[— 1 1],” [in Russian], Mat.Sb., 80, No. 2, 290–304(1969).

    Google Scholar 

  10. A. A. Ligun, “Inequalities for upper bounds of functionals,” Anal.Math., 2, No. 1, 11-40(1976).

    Google Scholar 

  11. N. P. Korneichuk, Exact Constants in Approximation Theory [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  12. O.L. Vinogradov, “Analog of the Akhiezer–Krein–Favard sums for periodic splines of minimal defect,” Probl.Mat.Anal., 25, 29–56(2003); English transl.: J.Math.Sc., 114, No. 5, 1608–1627 (2003).

    Google Scholar 

  13. V. V. Zhuk, Approximation of Periodic Functions [in Russian], Leningr. Gos. Univ., Leningrad (1982).

    Google Scholar 

  14. O. L. Vinogradov and V. V. Zhuk, “Sharp inequalities connected with estimation of approximations of periodic functions by moduli of continuity of their odd derivatives with different step,” Probl.Mat.Anal., 19, 69–88(1999); English transl: J.Math.Sc.

    Google Scholar 

  15. O. L. Vinogradov, “Sharp inequality for deviation of Rogozinskii sums and the second modulus of continuity in the space of continuous periodic functions,”[in Russian] Zap.Nauchn.Sem.POMI, 247, 26–45(1997).

    Google Scholar 

  16. A. Zigmund, Trigonometric Series, Vol. 2, Cambridge, (1988).

  17. N. P. Korneichuk, Splines in Approximation Theory [in Russian], Nauka, Moscow (1984).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vinogradov, O.L., Zhuk, V.V. Sharp Estimates for Deviations of Linear Approximation Methods for Periodic Functions by Linear Combinations of Moduli of Continuity of Different Order. Journal of Mathematical Sciences 114, 1628–1656 (2003). https://doi.org/10.1023/A:1022312828202

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022312828202

Keywords

Navigation