Advertisement

Mathematical Geology

, Volume 29, Issue 7, pp 891–918 | Cite as

Modeling Spatial Variability with One and Multidimensional Continuous-Lag Markov Chains

  • Steven F. Carle
  • Graham E. Fogg
Article

Abstract

The continuous-lag Markov chain provides a conceptually simple, mathematically compact, and theoretically powerful model of spatial variability for categorical variables. Markov chains have a long-standing record of applicability to one-dimensional (1-D) geologic data, but 2- and 3-D applications are rare. Theoretically, a multidimensional Markov chain may assume that 1-D Markov chains characterize spatial variability in all directions. Given that a 1-D continuous Markov chain can be described concisely by a transition rate matrix, this paper develops 3-D continuous-lag Markov chain models by interpolating transition rate matrices established for three principal directions, say strike, dip, and vertical. The transition rate matrix for each principal direction can be developed directly from data or indirectly by conceptual approaches. Application of Sylvester's theorem facilitates establishment of the transition rate matrix, as well as calculation of transition probabilities. The resulting 3-D continuous-lag Markov chain models then can be applied to geo-statistical estimation and simulation techniques, such as indicator cokriging, disjunctive kriging, sequential indicator simulation, and simulated annealing.

cokriging indicator geostatistics stochastic simulation transition probability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Allen, J. R. L., 1970a, Studies in fluviatile sedimentation: a comparison of fining upwards cyclothems with special reference to coarse-member composition and interpretation: Jour. Sed. Pet., v. 40,no. 1, p. 298–323.Google Scholar
  2. Allen, J. R. L., 1970b, Physical processes of sedimentation: American Elsevier Publ. Co., New York, 248 p.Google Scholar
  3. Agterberg, F. P., 1974, Geomathematics: Elsevier Scientific Publ. Co., Amsterdam and New York, 596 p.Google Scholar
  4. Carle, 1996, A transition probability-based approach to geostatistical characterization of hydrostratigraphic architecture: unpubl. doctoral dissertation, Univ. California, Davis, 248 p.Google Scholar
  5. Carle, S. F., and Fogg, G. E., 1996, Transition probability-based indicator geostatistics: Math. Geology, v. 28,no. 4, p. 453–477.Google Scholar
  6. Carr, D. D., Horowitz, A., Hrarbar, S. V., Ridge, K. F., Rooney, R., Straw, W. T., Webb, W., and Potter, P. E. 1966, Stratigraphic sections, bedding sequences and random processes: Science, v. 28,no. 3753, p. 89–110.Google Scholar
  7. Dacey, M. F., and Krumbein, W. C., 1970, Markovian models in stratigraphic analysis: Math. Geology, v. 2,no. 2, p. 175–191.Google Scholar
  8. Deutsch, C. V., and Journel, A. G., 1992, GSLIB: Geostatistical Software Library and user's guide: Oxford Univ. Press, New York, 340 p.Google Scholar
  9. Doveton, J. H., 1971, An application of Markov chain analysis to the Ayrshire Coal Measures succession: Scott. Jour. Geology, v. 7,no. 1, p. 11–27.Google Scholar
  10. Doveton, J. H., 1994, Theory and applications of vertical variability measures from Markov chain analysis, in Yarus, J. H., and Chambers, R. L., eds., Stochastic Modeling and Geostatistics: Computer Applications in Geology, No. 3, Am. Assoc. Petroleum Geologists, Tulsa, Oklahoma, 379 p.Google Scholar
  11. Ethier, V. G., 1975, Application of Markov analysis to the Banff Formation (Mississippian), Alberta: Math. Geology, v. 7,no. 1, p. 47–61.Google Scholar
  12. Gingerich, P. D., 1969, Markov analysis of cyclic alluvial sediments: Jour. Sed. Pet., v. 39,no. 1, p. 330–332.Google Scholar
  13. Goodman, L. A., 1968, The analysis of cross-classified data: independence, quasi-independence, and interaction in contingency table with and without missing entries: Jour. Am. Stat. Assoc., v. 63, p. 1091–1131.Google Scholar
  14. Goovaerts, P., 1994, On a controversial method for modeling a coregionalization: Math. Geology, v. 26,no. 2, p. 197–204.Google Scholar
  15. Goulard, M., and Voltz, M., 1992, Linear coregionalization model: Tools for estimation and choice of cross-variogram matrix: Math. Geology, 24,no. 3, p. 269–286.Google Scholar
  16. Harbaugh, J. W., and Bonham-Carter, G. F., 1970, Computer simulation in geology: Wiley-Interscience, New York, 575 p.Google Scholar
  17. Hattori, I., 1976, Entropy in Markov chains and discrimination of cyclic patterns in lithologic successions: Math. Geology, v, 8,no. 4, p. 477–497.Google Scholar
  18. Journel, A. G., and Huijbregts, C. J., 1978. Mining geostatistics: Academic Press, London, 600 p.Google Scholar
  19. Krumbein, W. C., 1967, FORTRAN IV computer programs for Markov chain experiments in geology: Kansas Geol. Survey, Computer Contr. 38 p.Google Scholar
  20. Krumbein, W. C., 1968, FORTRAN IV computer program for simulation of transgression and regression with continuous-time Markov models: Kansas Geol. Survey, Computer Contr. 26, 38 p.Google Scholar
  21. Krumbein, W. C., and Dacey, M. F., 1969, Markov chains and embedded Markov chains in geology: Math. Geology, v. 1,no. 1, p. 79–96.Google Scholar
  22. Leeder, M. R., 1982, Sedimentology: George Allen & Unwin Ltd, London, 344 p.Google Scholar
  23. Lin, C., and Harbaugh, J. W., 1984, Graphic display of two-and three-dimensional Markov computer models in geology: Van Nostrand Reinhold, New York, 180 p.Google Scholar
  24. Miall, A. D., 1973, Markov chain analysis applied to an ancient alluvial plain succession: Sedimentology, v. 20,no. 3, p. 347–364.Google Scholar
  25. Miall, A. D., 1982, Analysis of fluvial depositional systems: Education course notes series #20: Am. Assoc. Petroleum Geologists, Tulsa, Oklahoma, 75 p.Google Scholar
  26. Moss, B. P., 1990, Stochastic reservoir description: a methodology, in Hurst, A., Lovell, A., and Morton, A. C., eds., Geological applications of wireline logs: Geol. Soc. London Spec. Publ., v. 48, p. 57–75.Google Scholar
  27. Noyes, C. D., 1990, Hydrostratigraphic analysis of the Pilot Remediation Test Area, LLNL, Livermore, California: unpubl masters thesis, Univ. California, Davis, 165 p.Google Scholar
  28. Politis, D. N., 1994, Markov chains in many dimensions: Adv. Appl. Prob., v. 26,no. 3, p. 756–774.Google Scholar
  29. Potter, P. E., and Blakely, R. F., 1967, Generation of a synthetic vertical profile of a fluvial sandstone body: Jour. Soc. Petr. Eng. of AIME, v. 7,no. 3, p. 243–251.Google Scholar
  30. Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., 1992, Numerical recipes in FORTRAN: Cambridge Univ. Press, New York, 963 p.Google Scholar
  31. Qualheim, B. J., 1988, Well log report for the LLNL ground water project 1984–1987, Lawrence Livermore National Laboratory, UCID-21342 (updated 1989 and 1993), 12 p plus 340 sheets.Google Scholar
  32. Rivoirard, J., 1994, Introduction to disjunctive kriging and non-linear geostatistics: Oxford Univ. Press, New York, 180 p.Google Scholar
  33. Rolke, W. A., 1991, Continuous-time Markov processes as a stochastic model for sedimentation: Math. Geology, v. 23,no. 3, p. 297–304.Google Scholar
  34. Ross, S., 1993, Introduction to probability models (5th ed.): Academic Press, San Diego, California, 556 p.Google Scholar
  35. Schwarzacher, W., 1969, The use of Markov chains in the study of sedimentary cycles: Math. Geology, v. 12,no. 3, p. 213–234.Google Scholar
  36. Smith, B. T., Boyle, J. M., Dongarra, J. J., Garbow, B. S., Ikebe, Y., Klema, V. C., and Moler, C. B., 1976, Matrix eigensystem routines—EISPACK guide: Lecture notes in computer science (2nd ed.), v. 6: Springer-Verlag, New York, 551 p.Google Scholar
  37. Switzer, P., 1965, A random set process in the plane with a Markovian property (note): Ann. Math. Stat., v. 36,no. 2, p. 1859–1863.Google Scholar
  38. Turk, G., 1982, Markov chains: Letters to the Editor: Math. Geology, v. 14,no. 5, p. 539–542.Google Scholar
  39. Turk, G., Naylor, M. A., and Woodcock, N. H., 1979, Transition analysis of structural sequences (discussion): Geol. Soc. America Bull., v. 90,no. 10, 1989–1991.Google Scholar
  40. Vistelius, A. B., 1949, On the question of the mechanism of formation of strata: Dokl. Akad. Nauk SSSR, v. 65,no. 2, p. 191–194.Google Scholar
  41. Vistelius, A. B., 1967, Studies in mathematical geology: Consultants Bureau, New York, p. 252–258.Google Scholar

Copyright information

© International Association for Mathematical Geology 1997

Authors and Affiliations

  • Steven F. Carle
    • 1
  • Graham E. Fogg
    • 1
    • 2
  1. 1.Hydrologic SciencesUniversity of CaliforniaDavis
  2. 2.Lawrence Livermore National LaboratoryLivermore

Personalised recommendations