Advertisement

Journal of Low Temperature Physics

, Volume 111, Issue 1–2, pp 49–71 | Cite as

A High-Resolution Thermometer for the Range 1.6 to 5 K

  • Haiying Fu
  • Hanan Baddar
  • Kerry Kuehn
  • Melora Larson
  • Norbert Mulders
  • Anton Schegolev
  • Guenter Ahlers
Article

Abstract

This paper presents a detailed design, a theoretical analysis, and experimental tests of a high-resolution thermometer for use in the temperature range from 1.6 to 5 K. The device uses a dc-SQUID magnetometer to determine the change in magnetization with temperature of a paramagnetic salt in a magnetic field. The field is provided by a small permanent magnet attached to the thermometer. Measurements of the sensitivity of the device agree well with the theoretical analysis. Near 2.17 K (the superfluid transition of 4 He at saturated vapor pressure) the thermometer has a specific sensitivity of 4000φ 0 /K Gauss. There it achieves a temperature resolution better than 10 −9 K when it is charged with a field of about 300 Gauss. At 4.2 K, the specific sensitivity is smaller by a factor of 50, but should still allow temperature measurements with a resolution better than 10 −7 K. Near 2.17 K, drifts of the device are below the level of 10 −13 K/s. The thermometer has a small mass of about 7 g (excluding the magnet), and thus the advantage of relatively small cosmic radiation heating during microgravity experiments in Earth orbit.

Keywords

Magnetic Field Vapor Pressure Theoretical Analysis Temperature Measurement Experimental Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    See, for instance, J. A. Lipa, D. R. Swanson, J. A. Nissen, T. C. P. Chui, and U. E. Israelson, Phys. Rev. Lett. 76, 944 (1996); F.-C. Liu and G. Ahlers, Phys. Rev. Lett. 76, 1300 (1996); and G. Ahlers and R. V. Duncan, in Frontiers of Physics, Proceedings of the Landau Memorial Conference, E. Gotsman, Y. Ne'eman, and A. Voronel (eds.), Pergamon, Oxford (1990).Google Scholar
  2. 2.
    J. A. Lipa, B. C. Leslie, and T. C. Walstrom, Physica 107B, 331 (1981).Google Scholar
  3. 3.
    V. Steinberg and G. Ahlers, J. Low Temp. Phys. 53, 255 (1983).Google Scholar
  4. 4.
    T. C. P. Chui and J. A. Lipa, in Proceedings of the Seventeenth International Conference on Low Temperature Physics, Karlsruhe, 1984, North-Holland, Amsterdam (1984), p. 931.Google Scholar
  5. 5.
    M. J. Adriaans, T. C. P. Chui, M. Ndesandjo, D. R. Swanson, and J. A. Lipa, Physica 169B, 455 (1991).Google Scholar
  6. 6.
    R. V. Duncan and G. Ahlers, Phys. Rev. B 43, 7707 (1991).Google Scholar
  7. 7.
    L. S. Goldner, N. Mulders, and G. Ahlers, in Temperature: Its Measurement and Control in Science and Industry, Vol. 6, J. F. Schooly (ed.), American Institute of Physics, New York (1992), pp. 113–116.Google Scholar
  8. 8.
    T. C. P. Chui, D. R. Swanson, M. J. Adrians, J. A. Nissen, and J. A. Lipa, in Temperature: Its Measurement and Control in Science and Industry, Vol. 6, J. F. Schooly (ed.), American Institute of Physics, New York (1992).Google Scholar
  9. 9.
    G. K.-S. Wong, Ph.D. Thesis, Cornell University (1990) (unpublished).Google Scholar
  10. 10.
    D. R. Swanson, J. A. Nissen, T. C. P. Chui, P. R. Williams, and J. A. Lipa, Physica B 194–196, 25 (1994).Google Scholar
  11. 11.
    H. Baddar, H. Fu, M. Larson, N. Mulders, and G. Ahlers, Czech. J. Phys. 46-Suppl, 2859 (1996).Google Scholar
  12. 12.
    L. S. Goldner and G. Ahlers, Phys. Rev. B 45, 13129 (1992).Google Scholar
  13. 13.
    L. Goldner, N. Mulders, and G. Ahlers, J. Low Temp. Phys. 93, 125 (1993).Google Scholar
  14. 14.
    F.-C. Liu and G. Ahlers, Physica B 194–196, 597 (1994).Google Scholar
  15. 15.
    F.-C. Liu and G. Ahlers, Phys. Rev. Lett. 76, 1300 (1996).Google Scholar
  16. 16.
    See, for instance, M. Larson, F.-C. Liu, and U. E. Israelsson, Czech. J. Phys. 46-Suppl, 179 (1996).Google Scholar
  17. 17.
    T. C. P. Chui, D. R. Swanson, M. J. Adriaans, J. A. Nissen, and J. A. Lipa, Phys. Rev. Lett. 69, 3005 (1992).Google Scholar
  18. 18.
    J. A. Lipa, D. R. Swanson, J. A. Nissen, T. C. P. Chui, and U. E. Israelsson, Phys. Rev. Lett. 76, 944 (1996).Google Scholar
  19. 19.
    A. R. Miedema, R. F. Wielinga, and W. J. Huiskamp, Physica 31, 1585 (1965).Google Scholar
  20. 20.
    H. Suzuki and T. Watanabe, Phys. Lett. 26A, 81 (1967).Google Scholar
  21. 21.
    L. J. deJongh, A. R. Miedema, and R. F. Wielinga, Physica 46, 44 (1970).Google Scholar
  22. 22.
    L. J. deJongh and A. R. Miedema, Experiments on Simple Magnetic Model Systems, Barnes and Noble, New York (1974).Google Scholar
  23. 23.
    We had hoped to prevent the reaction between CAB and copper by gold plating. We have found since that CAB reacts also with gold, thus rendering this step ineffective. However, the gold plating did not seem to have a detrimental effect on the thermometer sensitivity.Google Scholar
  24. 24.
    In some other thermometer designs which have been described, the salt was not sealed and the apparatus in which the thermometers were used had to be cooled close to nitrogen temperature before it could be evacuated without decomposing the salt, thus making leak testing at ambient temperature impossible.Google Scholar
  25. 25.
    We used Hitachi Magnetics Corporation Hicorex 96B permanent magnets with a cross section of 0.85 × 0.85 cm2.Google Scholar
  26. 26.
    K. W. Rigby, Rev. Sci. Instrum. 59, 156 (1988).Google Scholar
  27. 27.
    J. W. Thomasson and D. M. Ginsberg, Rev. Sci. Instrum. 47, 387 (1976).Google Scholar
  28. 28.
    J. D. Jackson, Classical Electrodynamics, Wiley, New York (1975).Google Scholar
  29. 29.
    W. R. Smythe, Static and Dynamic Electricity, Hemisphere Publishing Corporation, New York (1989), pp. 340.Google Scholar
  30. 30.
    K. A. Muething, D. O. Edwards, J. D. Feder, W. J. Gully, and H. N. Scholz, Rev. Sci. Instrum. 53, 485 (1982).Google Scholar
  31. 31.
    Experimental Techniques in Condensed Matter Physics at Low Temperatures, R. C. Richardson and E. N. Smith (eds.), Addison-Wesley Frontiers in Physics (1988).Google Scholar
  32. 32.
    For the Conductus dc-SQUID Tcf = 5φ0A. For the Quantum Design ac-SQUID T cf = 10φ0A.Google Scholar
  33. 33.
    See, for instance, American Institute of Physics Handbook, second edition, McGraw-Hill, New York (1963), pp. 5–233.Google Scholar
  34. 34.
  35. 35.
    M. Larson, Ph. D. Thesis, University of California at Santa Barbara (1993) (unpublished).Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Haiying Fu
    • 1
  • Hanan Baddar
    • 1
  • Kerry Kuehn
    • 1
  • Melora Larson
    • 1
  • Norbert Mulders
    • 1
  • Anton Schegolev
    • 1
  • Guenter Ahlers
    • 1
  1. 1.Department of Physics and Center for Nonlinear ScienceUniversity of California at Santa BarbaraSanta BarbaraUSA

Personalised recommendations