Skip to main content
Log in

Controlling Surface Interactions with Grafted Polymers

  • Published:
Interface Science

Abstract

The interactions between surfaces modified with grafted polymers is studied theoretically. The aim of this work is to find polymer surface modifications that will result in localized attractive interactions between the surfaces. The practical motivation of the work is to find means to control the distance between bilayers and solid supports in supported membranes. Two theoretical approaches are used, the analytical treatment of Alexander and a molecular theory. It is found that grafting each end of the polymer to each surface results in an interaction with a well defined minimum. The location of the minima is found to be very close to the thickness of the polymer layer when the chains are grafted to only one of the surfaces. The predictions of the analytical theory are in excellent agreement with the molecular approach in this case. It is found that increasing the surface coverage increases the strength of the interaction. However, increasing the polymer chain length at fixed surface coverage results in a decrease of the free energy cost associated with separating the surfaces from their optimal distance. For the cases in which grafting to both surfaces is not possible, the molecular theory is used to study the effect of functionalizing segments of the chain to achieve an attractive well. It is found that by functionalizing the free end-groups of the polymers with segments attracted to the membrane, the range of the attractive interaction is significantly larger than the thickness of the unperturbed layer. Functionlizing the middle segments of the chains results in a shorter range attraction but of the same strength as in the end-functionalized layers. The optimal polymer modification is found to be such that the functionlized groups are attracted to the bare surface but are not attracted to the grafting surface. The relevance of the results to the design of experimental surface modifiers is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.H. Napper, Polymeric Stabilization of Colloidal Dispersions (Academic Press, 1983).

  2. D.D. Lasic and D. Papahadjopoulos, Curr. Opin. Solid State Mater. Sci. 1, 392 (1996).

    Google Scholar 

  3. D.D. Lasic and F. Martin (eds.), Stealth Liposomes, Pharmacology and Toxicology: Basic and Clinical Aspects (CRC Press, Boca Raton, 1995).

    Google Scholar 

  4. D.L. Elbert and J.A. Hubbell, Annu. Rev. Mater. Sci. 26, 365 (1996).

    Google Scholar 

  5. S. Alexander, J. Physique 38, 977 (1977).

    Google Scholar 

  6. S. Alexander, J. Physique 38, 983 (1977).

    Google Scholar 

  7. P.D. de Gennes, Macromolecules 135, 1069 (1980).

    Google Scholar 

  8. P.D. de Gennes, Macromolecules 15, 492 (1982).

    Google Scholar 

  9. C.M. Wijmans, J.M.H.M. Scheutjens, and E.B. Zhulina, Macromolecules 25, 2657 (1992).

    Google Scholar 

  10. C.M. Wijmans, J.M.H.M. Scheutjens, and E. Zhulina, Macromolecules 26, 7214 (1993).

    Google Scholar 

  11. S.T. Milner, Science 251, 905 (1996).

    Google Scholar 

  12. S.T. Milner, T.A. Witten, and M.E. Cates, Macromolecules 21, 2610 (1988).

    Google Scholar 

  13. E.B. Zhulina, O.V. Borisov, and V.A. Priamitsyn, J. Colloid Interf. Sci. 137, 495 (1990).

    Google Scholar 

  14. R.R. Netz and M. Schick, Europhys. Lett. 38, 37 (1997).

    Google Scholar 

  15. A. Chakrabarti and R. Toral, Macromolecules 23, 2016 (1990).

    Google Scholar 

  16. R. Toral and A. Chakrabarti, Phys. Rev. E 47, 4240 (1993).

    Google Scholar 

  17. G.S. Grest and M. Murat, Macromolecules 26, 3108 (1993).

    Google Scholar 

  18. G.S. Grest, Macromolecules 27, 418 (1995).

    Google Scholar 

  19. S. Patel, M. Tirrell, and G. Hadziioannou, Colloids and Surfaces 31, 157 (1988).

    Google Scholar 

  20. J. Klein, D. Perahia, and S. Warburg, Nature 352, 143 (1991).

    Google Scholar 

  21. M.A. Carignano and I. Szleifer, Macromolecules 28, 3197 (1995).

    Google Scholar 

  22. I. Szleifer and M.A. Carignano, Adv. Chem. Phys. 94, 165 (1996).

    Google Scholar 

  23. I. Szleifer, Curr. Opin. Colloid Interface Sci. 1, 416 (1996).

    Google Scholar 

  24. J. Milton Harris and S. Zalipsky (eds.), Poly(Ethylene Glycol): Chemistry and Biological Applications, ACS Symp. Ser (ACS, Washington, 1997).

    Google Scholar 

  25. J. Satulovsky, M.A. Carignano, and I. Szleifer, Proc. Natl. Acad. Sci. USA 97, 9037 (2000).

    Google Scholar 

  26. M.C. Faure, P. Bassereau, M.A. Carignano, I. Szleifer, Y. Gallot, and D. Andelman, Eur. Phys. J. B 3, 365 (1998).

    Google Scholar 

  27. T. McPherson, A. Kidane, I. Szleifer, and K. Park, Langmuir 14, 176 (1998).

    Google Scholar 

  28. T.R. Baekmark, G. Elender, D.D. Lasic, and E. Sackmann, Langmuir 11, 3975 (1995).

    Google Scholar 

  29. S.G. Boxer, Curr. Opin. Chem. Bio. 4, 704 (2000).

    Google Scholar 

  30. G.B. Luo, T.T. Liu, X.S. Zhao, Y.Y. Huang, C.H. Huang, and W.X. Cao, Langmuir 17, 4074 (2001).

    Google Scholar 

  31. J.U. Bowie, Curr. Opin. Struc. Bio. 11, 397 (2001).

    Google Scholar 

  32. M.A. Carignano and I. Szleifer, J. Chem. Phys. 98, 5006 (1993).

    Google Scholar 

  33. I. Szleifer, Biophys. J. 72, 595 (1997).

    Google Scholar 

  34. M.A. Carignano and I. Szleifer, J. Chem. Phys. 102, 8662 (1995).

    Google Scholar 

  35. M. Murat and G.S. Grest, Phys. Rev. Lett. 63, 1074 (1989).

    Google Scholar 

  36. G.M. Verkhivker, D. Bouzida, D.K. Gehlhaar, P.A. Rejto, S.T. Freer, and P.W. Rose, Curr. Opin. Struc. Biol. 12, 192 (2002).

    Google Scholar 

  37. J. Israelachvili, Intermolecular & Surface Firces (Academic Press, London, 1992).

    Google Scholar 

  38. M.A. Carignano and I. Szleifer, Mol. Phys. 100, 2993 (2002).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carignano, M., Szleifer, I. Controlling Surface Interactions with Grafted Polymers. Interface Science 11, 187–197 (2003). https://doi.org/10.1023/A:1022122711798

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022122711798

Navigation