Quantum Information Processing

, Volume 1, Issue 4, pp 283–302 | Cite as

Natural Majorization of the Quantum Fourier Transformation in Phase-Estimation Algorithms

  • Román Orús
  • José I. Latorre
  • Miguel A. Martín-Delgado


We prove that majorization relations hold step by step in the Quantum Fourier Transformation (QFT) for phase-estimation algorithms. Our result relies on the fact that states which are mixed by Hadamard operators at any stage of the computation only differ by a phase. This property is a consequence of the structure of the initial state and of the QFT, based on controlled-phase operators and a single action of a Hadamard gate per qubit. The detail of our proof shows that Hadamard gates sort the probability distribution associated to the quantum state, whereas controlled-phase operators carry all the entanglement but are immaterial to majorization. We also prove that majorization in phase-estimation algorithms follows in a most natural way from unitary evolution, unlike its counterpart in Grover's algorithm.

PACS: 03.67.-a, 03.67.Lx

majorization quantum Fourier transformation quantum phase-estimation quantum algorithms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. F. Muirhead, Proc. Edinburgh Math. Soc. 21, 144 (1903).Google Scholar
  2. 2.
    G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities (Cambridge University Press, Cambridge, 1978).Google Scholar
  3. 3.
    A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and its Applications (Academic Press Inc., NewYork, 1979).Google Scholar
  4. 4.
    R. Bhatia, Matrix Analysis Graduate Texts in Mathematics Vol. 169 (Springer-Verlag, New York, 1996).Google Scholar
  5. 5.
    M. A. Nielsen and G. Vidal, Quantum Information and Computation, 1, 76 (2001).Google Scholar
  6. 6.
    J. I. Latorre, M. A. Martín-Delgado, Phys. Rev. A 66, 022305 (2002), quant-ph/0111146.Google Scholar
  7. 7.
    R. OrÚs, J. I. Latorre, and M. A, Martín-Delgado, in preparation.Google Scholar
  8. 8.
    M. Mosca, Quantum Computer Algorithms (Ph.D. Thesis).Google Scholar
  9. 9.
    E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, Phys. Rev. Lett. 81, 5442–5444 (1998), quant-ph/980245.Google Scholar
  10. 10.
    J. Roland and N. J. Cerf, quant-ph/0107015.Google Scholar
  11. 11.
    A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, and D. A. Spielman, quant-ph/0209139.Google Scholar
  12. 12.
    L. K. Grover, Phys. Rev. Lett. 78, 325 (1997).Google Scholar
  13. 13.
    P. W. Shor, Proc. 35th IEEE, Los Alamitos CA, 352 (1994), quant-ph/9508027.Google Scholar
  14. 14.
    E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, quant-ph/0001106.Google Scholar
  15. 15.
    R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca, Proc. R. Soc. London, Ser. A 454, 339 (1998).Google Scholar
  16. 16.
    A. Yu. Kitaev, quant-ph/9511026.Google Scholar
  17. 17.
    J. Preskill, Quantum Information and Computation, Scholar
  18. 18.
    C. Moore, Another Way to Perform the Quantum Fourier Transform in Linear Parallel Time,; and references therein.Google Scholar
  19. 19.
    M. Boyer, G. Brassard, P. Hoeyer, and A. Tapp, Fortsch. Phys. 46 (1998) 493–506, quantph/9605034.Google Scholar
  20. 20.
    A. Galindo and M. A. Martín-Delgado, Phys. Rev. A 62, 62303 (2000), quant-ph/9612026.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Román Orús
    • 1
  • José I. Latorre
    • 1
  • Miguel A. Martín-Delgado
    • 2
  1. 1.Department d'Estructura i Constituents de la MatèriaUniv. BarcelonaBarcelonaSpain
  2. 2.Departamento de Física Teórica IUniversidad ComplutenseMadridSpain

Personalised recommendations