Ukrainian Mathematical Journal

, Volume 54, Issue 7, pp 1181–1191 | Cite as

On a Hall Hypothesis

  • V. N. Tyutyanov


We obtain a new criterion for the solvability of a finite group with a given family of Hall subgroups.


Finite Group Hall Subgroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Hall, “Theorems like Sylow's,” London Math. Soc., 6, No. 3, 286–304 (1956).Google Scholar
  2. 2.
    Z. Arad and M. Ward, “New criteria for the solvability of finite groups,” J. Algebra, 77, 234–246 (1982).Google Scholar
  3. 3.
    E. L. Spitznagel, “Hall subgroups of certain families of finite groups,” Math. Z., 97, No. 4, 259–290 (1967).Google Scholar
  4. 4.
    J. S. Williams, “Prime graph components of finite groups,” J. Algebra, 69, 487–513 (1981).Google Scholar
  5. 5.
    A. S. Kondrat'ev, “Subgroups of finite Chevalley groups,” Usp. Mat. Nauk, 41, No. 1 (247), 57–96 (1986).Google Scholar
  6. 6.
    K. Zsigmondy, “Zur Theorie der Potenzreste,” Monath. Math. Phys., 3, 265–284 (1892).Google Scholar
  7. 7.
    C. W. Curtis, W. M. Kantor, and G. M. Seitz, “The 2-transitive permutation representations of the finite Chevalley group,” Trans. Amer. Math. Soc., 218, 1–59 (1976).Google Scholar
  8. 8.
    L. S. Kazarin, “Product of two solvable subgroups,” Commun. Algebra, 14, No. 6, 1001–1066 (1986).Google Scholar
  9. 9.
    B. Huppert, Endsliche Gruppen, Springer, Berlin (1967).Google Scholar
  10. 10.
    L. S. Kazarin, “Automorphisms, factorizations, and theorems of Sylow type,” Mat. Sb., 120, No. 2, 190–199 (1983).Google Scholar
  11. 11.
    A. S. Kondrat'ev, “On components of the graph of prime numbers for finite simple groups,” Mat. Sb., 180, No. 6, 787–797 (1989).Google Scholar
  12. 12.
    J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, An Atlas of Finite Groups, Clarendon Press, Oxford (1985).Google Scholar
  13. 13.
    V. N. Tyutyanov, On Factorization of Finite Groups by Solvable Subgroups [in Russian], Preprint No. 48 (448), Institute of Mathematics, Belorussian Academy of Sciences, Minsk (1990).Google Scholar
  14. 14.
    D. Gorenstein, Finite Groups, Harper and Row, New York (1968).Google Scholar
  15. 15.
    P. Kleidman, “A proof of the Kegel – Wielandt conjecture on subnormal subgroups,” Ann. Math., 133, 369–428 (1991).Google Scholar
  16. 16.
    M. W. Liebeck and J. Saxl, “The primitive permutation groups of odd degree,” J. London Math. Soc., 31, No. 2, 250–264 (1985).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • V. N. Tyutyanov
    • 1
  1. 1.Gomel BranchInternational Institute for Labor and Social RelationsGomelBelorussia

Personalised recommendations