Ukrainian Mathematical Journal

, Volume 54, Issue 7, pp 1200–1206 | Cite as

On Recognizability of the Group E8(q) by the Set of Orders of Elements

  • O. A. Alekseeva
  • A. S. Kondrat'ev


We prove that if a finite group G has the same set of orders of elements as the group E8(q), then O3(G/F(G)) is isomorphic to E8(q).


Finite Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. S. Williams, “Prime graph components of finite groups,” J. Algebra, 69, No. 2, 487–513 (1981).Google Scholar
  2. 2.
    A. S. Kondrat'ev, “On components of the graph of prime numbers of finite simple groups,” Mat. Sb., 180, No. 6, 787–797 (1989).Google Scholar
  3. 3.
    V. D. Mazurov and W. J. Shi, “Groups whose elements have given orders,” London Math. Soc. Lect. Notes, 261, 532–537 (1999).Google Scholar
  4. 4.
    M. Ashbacher, Finite Group Theory, Cambridge University Press, Cambridge (1986).Google Scholar
  5. 5.
    J. H. Conway, R. Curtis, S. Norton, R.A. Parker, and R. A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford (1985).Google Scholar
  6. 6.
    R. Steinberg, Lectures on Chevalley Groups, Yale University Press, New Haven (1967).Google Scholar
  7. 7.
    A. S. Kondrat'ev and V. D. Mazurov, “Recognition of alternating groups of prime order by the orders of their elements,” Sib. Mat. Zh., 41, No. 2, 359–369 (2000).Google Scholar
  8. 8.
    Tiep Pham Huu, “p-Steinberg characters of finite simple groups,” J. Algebra, 187, No. 1, 304–319 (1997).Google Scholar
  9. 9.
    M. S. Lucido, “Prime graph components of finite almost simple groups,” Rend. Sem. Mat. Univ. Padova, 102, 1–22 (1999).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • O. A. Alekseeva
    • 1
  • A. S. Kondrat'ev
    • 2
  1. 1.South-Ural UniversityChelyabinskRussia
  2. 2.Institute of Mathematics and MechanicsRussian Academy of SciencesEkaterinburgRussia

Personalised recommendations