Foundations of Chemistry

, Volume 5, Issue 1, pp 23–41 | Cite as

A Systems Theory for Chemistry

  • Markus Reiher


A systems theory for chemistry is proposed in order to provide a general framework, which covers different theoretical approaches used in the molecular sciences.The basic elements of systems theory are introduced and discussed.By construction, this systems chemistry offers classification and categorizationschemes that will help to identify the range of applicability of certain theoretical approachesas well as to find yet unanswered fundamental questions. Consequently, it will be of value not only to thosewho want to understand and study the structure of chemistry, but it might also be of importance to daily research in chemistry.


Physical Chemistry System Theory Theoretical Approach General Framework Basic Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. P.W. Atkins. Molecular Quantum Mechanics, 2nd edn. Oxford: Oxford University Press, 1983.Google Scholar
  2. R.F.W. Bader. Atoms in Molecules. Acc. Chem. Res. 18: 9–15, 1985.Google Scholar
  3. R.F.W. Bader. Atoms in Molecules – A Quantum Theory Volume 22 of International Series of Monographs on Chemistry, 1st edn. Oxford: Oxford Science Publications, 1990.Google Scholar
  4. L. Chong and L.B. Ray. Whole-istic Biology. Science 295: 1661, 2002.Google Scholar
  5. M.E. Csete and J.C. Doyle. Reverse Engineering of Biological Complexity. Science 295: 1664–1669, 2002.Google Scholar
  6. E.H. Davidson et al. A Genomic Regulatory Network for Development. Science 295: 1669–1678, 2002.Google Scholar
  7. P.A.M. Dirac. The Quantum Theory of the Electron. Proc. Roy. Soc. London A 117: 610–624, 1928.Google Scholar
  8. P.A.M. Dirac. The Quantum Theory of the Electron (Part II). Proc. Roy. Soc. London A 118: 351–361, 1928.Google Scholar
  9. H. Everett III. “Relative State” Formulation of Quantum Mechanics. Rev. Mod. Phys. 29(3): 454–462, 1957.Google Scholar
  10. D. Giulini, E. Joos, C. Kiefer, J. Kupsch, I.-O. Stamatescu and H.D. Zeh. Decoherence and the Appearance of a Classical World in Quantum Theory. Berlin, Heidelberg: Springer-Verlag, 1996. See also: Scholar
  11. T. Helgaker, P. Jørgensen and J. Olsen. Molecular Electronic-Structure Theory. Chichester, England: JohnWiley & Sons, 2000.Google Scholar
  12. R. Hoffmann. Brücken zwischen Anorganischer und Organischer Chemie (Nobel-Vortrag). Angew. Chem. 94: 725–739, 1982; Building Bridges Between Inorganic and Organic Chemistry (Nobel lecture). Angew. Chem. Int. Ed. 21: 711–724, 1982.Google Scholar
  13. R. Hoffmann, V.I. Minkin and B.K. Carpenter. Ockham's Razor and Chemistry. Bull. Soc. Chim. Fr. 133: 117–130, 1996.Google Scholar
  14. W. Kauzmann. Quantum Chemistry. New York: Academic Books Inc., 1957.Google Scholar
  15. H. Kitano. Systems Biology: A Brief Overview. Science 295: 1662–1664, 2002.Google Scholar
  16. K. Kremer and F. Müller-Plathe. Multiscale Problems in Polymer Science: Simulation Approaches. MRS Bulletin: 205–210, 2001.Google Scholar
  17. C.F. Kunz and B.A. Hess. A Fast ab initio Model for the Calculation of Excited Electronic States of Atoms and Molecules in a Weakly Polarizable Environment. I. Theory. J. Chem. Phys. 112(3): 1373–1382, 2000; II. Application to the Spectrum of Cesium in Liquid Helium. J. Chem. Phys. 112(3): 1383–1389, 2000.Google Scholar
  18. R.B. Lindsay and H. Margenau. Foundations of Physics. Woodbridge: Ox Bow Press, 1981.Google Scholar
  19. F. Müller-Plathe. Coarse-Graining in Polymer Simulation: From the Atomistic to the Mesoscopic Scale and Back. Chem. Phys. Chem. 3: 754–769, 2002.Google Scholar
  20. D. Noble. Modeling the Heart – from Genes to Cells to theWhole Organ. Science 295: 1678–1682, 2002.Google Scholar
  21. J.A. Pople. Quantenchemische Modelle (Nobel-Vortrag). Angew. Chem. 111: 2015–2023, 1999; Quantum Chemical Models (Nobel Lecture). Angew. Chem. Int. Ed. 38: 1895–1902, 1999.Google Scholar
  22. M. Reiher and P.A. Netz. Welche Bedeutung haben theoretische Konzepte in der Chemie? Chem. unserer Zeit 33: 177–185, 1999.Google Scholar
  23. M. Reiher. The Systems-Theoretical View of Chemical Concepts. Found. Chem.: 2002, in press.Google Scholar
  24. A. Ruark. The Roles of Discrete and Continuous Theories in Physics. Phys. Rev. 37: 315–326, 1931.Google Scholar
  25. B. Thaller. The Dirac Equation. Texts and Monographs in Physics. New York: Springer-Verlag, 1992.Google Scholar
  26. L. von Bertalanffy. General System Theory – Foundations, Development, Applications, 13th printing of revised edn. New York: George Braziller, Inc., 2001.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Markus Reiher
    • 1
  1. 1.Theoretische ChemieUniversität Erlangen-NürnbergErlangenGermany

Personalised recommendations