Skip to main content
Log in

Rigorous and Portable Standard Functions

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

Today's floating point implementations of elementary transcendental functions are usually very accurate. However, with few exceptions, the actual accuracy is not known. In the present paper we describe a rigorous, accurate, fast and portable implementation of the elementary standard functions based on some existing approximate standard functions. The scheme is outlined for IEEE 754, but not difficult to adapt to other floating point formats. A Matlab implementation is available on the net. Accuracy of the proposed algorithms can be rigorously estimated. As an example we prove that the relative accuracy of the exponential function is better than 2.07 eps in a slightly reduced argument range (eps denoting the relative rounding error unit). Otherwise, extensive computational tests suggest for all elementary functions and all suitable arguments an accuracy better than about 3 eps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. O. Aberth and M. Schaefer, Precise computation using range arithmetic, via C++, ACM Trans. Math. Softw., 18:4 (1992), pp. 481-491.

    Article  Google Scholar 

  2. M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, Dover, New York, 1968.

    Google Scholar 

  3. N. C. Börsken, Komplexe Kreis-Standardfunktionen, Diplomarbeit, Freiburger Intervall-Ber. 78/2, Inst. für Angewandte Mathematik, Universität Freiburg, 1978.

  4. K. D. Braune, Hochgenaue Standardfunktionen f¨ur reelle und komplexe Punkte und Intervalle in beliebigen Gleitpunktrastern, Dissertation, Universität Karlsruhe, 1987.

  5. R. P. Brent, A Fortran multiple-precision arithmetic package, Tech. Report, Department of Computer Science, Australian National University, Canberra, 1975.

    Google Scholar 

  6. R. P. Brent, J. A. Hooper, and J. M. Yohe, An AUGMENT interface for Brent's multiple precision arithmetic package, ACM Trans. Math. Software, 6:2 (1980), pp. 204-217.

    Article  Google Scholar 

  7. B. M. Brown, D. K. R. McCormack, and A. Zettl, On the existence of an eigenvalue below the essential spectrum, Proc. R. Soc. Lond., 455 (1999), pp. 2229-2234.

    Google Scholar 

  8. J.-P. Eckmann and P. Wittwer, Computer Methods and Borel Summability Applied to Feigenbaum's Equation, Vol. 227 of Lecture Notes in Physics, Springer-Verlag, Berlin, 1985.

    Google Scholar 

  9. T. C. Hales, Cannonballs and honeycombs, Notices Amer. Math. Soc., 47:4 (2000), pp. 440-449.

    Google Scholar 

  10. N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, PA, 1996.

    Google Scholar 

  11. O. Holzmann, B. Lang, and H. Schütt, Newton's constant of gravitation and verified numerical quadrature, Reliable Computing, 2:3 (1996), pp. 229-239.

    Google Scholar 

  12. IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985, Institute of Electrical and Electronics Engineers, New York, 1985.

  13. R. Klatte, U. Kulisch, M. Neaga, D. Ratz, and Ch. Ullrich, PASCAL-XSC-Sprachbeschreibung mit Beispielen, Springer-Verlag, Berlin, 1991.

    Google Scholar 

  14. R. Klatte, U. Kulisch, A. Wiethoff, C. Lawo, and M. Rauch, C-XSC A C++ Class Library for Extended Scientific Computing, Springer-Verlag, Berlin, 1993.

    Google Scholar 

  15. W. Krämer, Inverse Standardfunktionen für reelle und komplexe Intervallargumente mit a priori Fehlerabschätzung für beliebige Datenformate, Dissertation, Universität Karlsruhe, 1987.

  16. W. Krämer, Die Berechnung von Standardfunktionen in Rechenanlagen, Jahrb.Überbl. Math. 1992, 1992, pp. 97-115.

  17. B. Lang, Verified quadrature in determining Newton's constant of gravitation, J. Universal Computer Science, 4:1 (1998), pp. 16-24.

    Google Scholar 

  18. MATLAB User's Guide, Version 5, The MathWorks Inc., Natick, MA, 1997.

  19. J. M. Muller, Elementary Functions, Algorithms and Implementation, Birkhäuser, Boston, MA, 1997.

    Google Scholar 

  20. M. Payne and R. Hanek, Radian reduction for trigonometric functions, SIGNUM Newsletter, 18 (1983), pp. 19-24.

    Google Scholar 

  21. S. M. Rump, Fast and parallel interval arithmetic. BIT, 39:3 (1999), pp. 539-560.

    Google Scholar 

  22. S. M. Rump, INTLAB-INTerval LABoratory, in Developments in Reliable Computing, T. Csendes, ed., Kluwer Academic Publishers, Dordrecht, 1999, pp. 77-104. http://www.ti3.tu-harburg.de/rump/ intlab/index.html.

    Google Scholar 

  23. P. T. P. Tang, Table-lookup algorithms for elementary functions and their error analysis, Tech. Report MCS-P194-1190, Argonne National Lab., January 1991.

  24. W. F. Wong and E. Goto, Fast hardware-based algorithms for elementary function computations, in Proc. International Symposium on Supercomputing, Kyushu University Press, Fukuoka, Japan, 1991, pp. 56-65.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rump, S.M. Rigorous and Portable Standard Functions. BIT Numerical Mathematics 41, 540–562 (2001). https://doi.org/10.1023/A:1021971313412

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021971313412

Navigation