Skip to main content
Log in

Multirate Partitioned Runge-Kutta Methods

BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

The coupling of subsystems in a hierarchical modelling approach leads to different time constants in the dynamical simulation of technical systems. Multirate schemes exploit the different time scales by using different time steps for the subsystems. The stiffness of the system or at least of some subsystems in chemical reaction kinetics or network analysis, for example, forbids the use of explicit integration schemes. To cope with stiff problems, we introduce multirate schemes based on partitioned Runge—Kutta methods which avoid the coupling between active and latent components based on interpolating and extrapolating state variables. Order conditions and test results for such a lower order MPRK method are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

REFERENCES

  1. A. Bartel and M. Günther, A multirate W-method for electrical networks in statespace formulation, submitted for publication.

  2. Ch. Engstler and Ch. Lubich, Multirate extrapolation methods for differential equations with different time scales, Computing, 58 (1997), pp. 173-185.

    Google Scholar 

  3. Ch. Engstler and Ch. Lubich, MUR8: A multirate extension of the eighth-order Dormand-Prince method, Appl. Numer. Math., 25 (1997), pp. 185-192.

    Article  Google Scholar 

  4. C. W. Gear and R. R. Wells, Multirate linear multistep methods, BIT, 24 (1984), pp. 484-502.

    Article  Google Scholar 

  5. M. Günther and P. Rentrop, Multirate ROW methods and latency of electric circuits, Appl. Numer. Math., 13 (1993), pp. 83-102.

    Article  Google Scholar 

  6. M. Günther and P. Rentrop, Partitioning and multirate strategies in latent electric circuits, in Mathematical and Simulation of Electrical Circuits and Semiconductor Devices, R. E. Bank et al., eds., Birkhäser, Basel, 1996, pp. 33-60.

    Google Scholar 

  7. E. Hairer, Order conditions for numerical methods for partitioned ordinary differential equations, Numer. Math., 36 (1981), pp. 431-445.

    Article  Google Scholar 

  8. A. Kværnø and P. Rentrop, Low order multirate Runge-Kutta methods in electric circuit simulation, Preprint No. 99/1, IWRMM, Universität Karlsruhe (TH), 1999.

  9. P. Rentrop, Partitioned Runge-Kutta methods with stiffness detection and stepsize control, Numer. Math, 47 (1985), pp. 545-564.

    Article  Google Scholar 

  10. S. Skelboe and P. U. Anderson, Stability properties of backward Euler multirate formulas, SIAM J. Sci. Stat. Comp., 10 (1989), pp. 1000-1009.

    Article  Google Scholar 

  11. S. Skelboe, Stability properties of backward difference multirate formulas, Appl. Numer. Math., 5 (1989), pp. 151-160.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Günther, M., Kværnø, A. & Rentrop, P. Multirate Partitioned Runge-Kutta Methods. BIT Numerical Mathematics 41, 504–514 (2001). https://doi.org/10.1023/A:1021967112503

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021967112503

Navigation