Plasmas and Polymers

, Volume 2, Issue 4, pp 277–300 | Cite as

Radio-Frequency Hexamethyldisiloxane Plasma Deposition: A Comparison of Plasma- and Deposit-Chemistry

  • M. R. Alexander
  • F. R. Jones
  • R. D. Short


This study reports on the effect of input power to hexamethyldisiloxane (HMDSO) plasmas. The power dependence of the plasma-phase species and of the surface chemistry (of the deposits) has been investigated. Neutral and positive molecular species were detected within the plasma using mass spectrometry (MS). Secondary ion mass spectrometry (SIMS) was used to probe the molecular structure of the deposits. The elemental composition of the surface was determined by XPS and the deposition rate was monitored using a vibrating quartz crystal microbalance. Neutral and cationic molecules of mass greater than HMDSO were detected in the plasma. Their formation through ion-molecule reactions is proposed. Changes in the relative concentration of plasma-phase species follow those seen in molecular species detected at the deposit surface. Thus, we believe that the molecular structure of the deposits can be related to the species present in the plasma. While traditionally the dominant mechanism in deposit formation is assumed to be free radical combinations, we propose other possibilities involving cations with the aim of putting forward a new perspective on plasma polymerization mechanisms and thereby stimulating discussion.

Plasma deposition mass spectrometry surface chemical analysis gas phase oligomerization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Morita and S. Hattori, Applications of plasma polymers, in Plasma Deposition, Treatment, and Etching of Polymers, R. d'Agostino (ed.), Academic Press, pp. 423-462 (1990).Google Scholar
  2. 2.
    P. Fayer, J. Laurent, and A. Rime, Plasma deposited barrier coatings for food packaging, in ECASIA Montreux, Switzerland, October '9–13, Abstracts, H. J. Mathieu (ed.), TC-13 (1995).Google Scholar
  3. 3.
    A. M. Wróbel and M. R. Wertheimer, Plasma-polymerized organosilicones and organometallics, in Plasma Deposition, Treatment, and Etching of Polymers, R. d'Agostino (ed.), Academic Press, pp. 163-268 (1990).Google Scholar
  4. 4.
    M. R. Alexander, R. D. Short, F. R. Jones, W. Michaeli, M. Stollenwerk, G. Mathar, and J. Zabold, The heterogenous nature of hexamethyldisiloxane (HMDSO) plasma deposits, Ceramic films and coatings, British Ceramic Proceedings No. 54, Institute of Materials, pp. 87-99 (1995).Google Scholar
  5. 5.
    M. R. Alexander, R. D. Short, F. R. Jones, M. Stollenwerk, J. Zabold, and W. Michaeli, J. Mater. Sci. 31, 1879 (1996).Google Scholar
  6. 6.
    S. Eufinger, W. J. van Ooij, and K. D. Conners, DC-Plasma Polymerization of Hexamethyl-disiloxane Part II. Surface and interface characterization of films deposited on stainless steel substrates, Surface and Interface Analysis, April 1996 (in press).Google Scholar
  7. 7.
    A. M. Wróbel, M. Kryszewski, and M. Gazicki J. Macromol. Sci.-Chem. A20, 583 (1983).Google Scholar
  8. 8.
    M. R. Alexander, R. D. Short, F. R. Jones, M. Stollenwerk, J. Zabold, and W. Michaeli, The chemistry and morphology of deposits formed from hexamethyldisiloxane plasmas, J. Mater. Chem. (in preparation).Google Scholar
  9. 9.
    A. K. Hays., Proc. Electrochemical Soc. 75, 82-86, (1982).Google Scholar
  10. 10.
    A. M. Wróbel, G. Czeremuszkin, H. Szymanowski, and J. Kowalski, Plasma Chemistry and Plasma Processing. 10, 277 (1990).Google Scholar
  11. 11.
    A. M. Sarmadi, T. H. Ying, and F. Denes, Eur. Polym. J. 31, 847 (1995).Google Scholar
  12. 12.
    A. A. Howling, L. Sansonnens, J.-L. Dorier, and Ch. Hollenstein, J. Appl. Phys. 75, 1340 (1994).Google Scholar
  13. 13.
    M. L. Mandich and W. D. Reents, J. Chem. Phys. 96, 4233 (1992).Google Scholar
  14. 14.
    J. Eccles and J. C. Vickerman, J. Vac. Sci. Technol. A 7, 234 (1989).Google Scholar
  15. 15.
    D. Briggs, A. Brown, and J. C. Vickerman, Handbook of Static SIMS John Wiley and Sons, Chichester, p. 50.Google Scholar
  16. 16.
    L. O'Toole, R. D. Short, A. P. Ameen, and F. R. Jones J. Chem. Soc. Faraday Trans. 91, 1363 (1995).Google Scholar
  17. 17.
    A. M. Leeson, M. R. Alexander, R. D. Short, D. Briggs, and M. J. Hearn, Surface and Interface Analysis 25, 261(1997).Google Scholar
  18. 18.
    P. V. Wright and M. S. Beevers, Preparation of cyclic polysiloxanes, in Cyclic Polymers J. A. Semlyen (ed.), Elsevier Applied Science Publishers, p. 85 (1986).Google Scholar
  19. 19.
    D. Wang, F. R. Jones, and P. Denison, J. Adhesion Sci. Technol. 6, 79 (1992).Google Scholar
  20. 20.
    M. J. Vasile and G. Smolinsky, J. Electrochem. Soc. Electrochem. Sci. Tech. 119, 451 (1972).Google Scholar
  21. 21.
    M. R. Alexander, F. R. Jones, and R. D. Short, J. Phys. Chem. B 101, 3614-3619 (1997).Google Scholar
  22. 22.
    A. M. Wróbel, M. R. Wertheimer, J. Dib, and H. P. Schreiber, J. Macromol. Sci.-Chem. A14, 321 (1980).Google Scholar
  23. 23.
    A. Grill, Cold Plasma in Materials Fabrication from Fundamentals to Applications, IEEE Press, New York, 1994.Google Scholar
  24. 24.
    L. O'Toole, A. J. Beck, A. P. Ameen, F. R. Jones, and R. D. Short, J. Chem. Soc. Faraday Trans. 91, 3907 (1995).Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • M. R. Alexander
    • 1
  • F. R. Jones
    • 1
  • R. D. Short
    • 1
  1. 1.Department of Engineering Materials, Laboratory for Surface and Interface AnalysisUniversity of SheffieldSheffieldUnited Kingdom
  2. 2.CENATS UniversitéMarseilleFrance

Personalised recommendations