Algebra and Logic

, Volume 41, Issue 6, pp 374–390 | Cite as

Multi-Valued Fields. II

  • Yu. L. Ershov


The main model-theoretic results on multi-valued fields with near Boolean families of valuation rings obtained in [1, Ch. 4, Sec. 4.6] are generalized along two lines: we weaken the restriction on being absolutely unramified to a condition of being finite for an absolute ramification index, and we combine, through context, Theorems 4.6.2 and 4.6.4 (4.6.3 and 4.6.5).

multi-valued field Boolean family of valuation rings absolute ramification index 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yu. L. Ershov, Multi-Valued Fields [in Russian], Nauch. Kniga, Novosibirsk (2000).Google Scholar
  2. 2.
    Yu. L. Ershov, “Multiply valued fields,” Usp. Mat. Nauk, 37, No. 3, 55-93 (1982).Google Scholar
  3. 3.
    R. Balbes and Ph. Dwinger, Distributive Lattices, Missouri Press, Columbia, MI (1974).Google Scholar
  4. 4.
    C. C. Chang and H. J. Keisler, Model Theory, North-Holland, Amsterdam (1973).Google Scholar
  5. 5.
    Yu. L. Ershov, “Immediate extensions of Prüfer rings,” Algebra Logika, 40, No. 3, 262-289 (2001).Google Scholar
  6. 6.
    A. Prestel and J. Schmid, “Decidability of the rings of real algebraic and p-adic algebraic integers,” J. Reine Ang. Math., 414, 141-148 (1991).Google Scholar
  7. 7.
    L. Darnière, “Nonsingular Hasse principle for rings,” J. Reine Ang. Math., 529, 75-100 (2000).Google Scholar
  8. 8.
    B. Green, F. Pop, and P. Roquette, “On Rumely's local-global principle,” Jahr. Deutsche Math. Ver., 97, No. 2, 43-74 (1995).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Yu. L. Ershov
    • 1
  1. 1.NovosibirskRussia

Personalised recommendations