Advertisement

Ukrainian Mathematical Journal

, Volume 54, Issue 5, pp 785–794 | Cite as

On the Convergence of Fourier Series in the Space L1

  • P. V. Zaderei
  • B. A. Smal'
Article

Abstract

We establish necessary and sufficient conditions for the convergence in the mean of trigonometric series whose coefficients satisfy the Boas–Telyakovskii conditions.

Keywords

Fourier Series Trigonometric Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    N. K. Bari, Trigonometric Series [in Russian], Fizmatgiz, Moscow (1961).Google Scholar
  2. 2.
    W. H. Young, “On the Fourier series of bounded functions,” Proc. London Math. Soc., 12, No. 1, 41–70 (1913).Google Scholar
  3. 3.
    A. Zygmund, Trigonometric Series [Russian translation], GONTI, Moscow (1939).Google Scholar
  4. 4.
    A. N. Kolmogorov, “Sur l'ordre be grandeur des coefficients de la serie be Fourier-Lebesgue,” Bull. Acad. Pol. Sci. (A), 83–86 (1923).Google Scholar
  5. 5.
    E. Hille and J. D. Tamarkin, “On the summability of Fourier series. II,” Ann. Math., 34, No. 2, 329–348 (1933).Google Scholar
  6. 6.
    S. A. Telyakovskii, “On some estimates for trigonometric series with quasiconvex coefficients,” Mat. Sb., 63, No. 3, 426–444 (1964).Google Scholar
  7. 7.
    S. A. Telyakovskii, “On the convergence of Fourier series in the metric of L,” Mat. Zametki, 1, No. 1, 91–98 (1967).Google Scholar
  8. 8.
    S. A. Telyakovskii, “On the Sidon sufficient condition for the integrability of trigonometric series,” Mat. Zametki, 14, No. 3, 317–328 (1973).Google Scholar
  9. 9.
    S. Sidon, “Hinreichende Bedingungen fur den Fourier - Charakter einer trigonometrischen Reihen,” J. London Math. Soc., 14, No. 2, 158–160 (1939).Google Scholar
  10. 10.
    G. A. Fomin, “On one class of trigonometric series,” Mat. Zametki, 23, No. 2, 213–222 (1978).Google Scholar
  11. 11.
    N. Tanovic-Miller, “On a paper of Bojanic and Stanojevic,” Rend. Circ. Math. Palermo, Ser. II, 34, No. 2, 310–324 (1985).Google Scholar
  12. 12.
    Chand-Pao Chen, “L 1-convergence of Fourier series,” J. Austral. Math. Soc., 41, No. 3, 376–390 (1986).Google Scholar
  13. 13.
    C. V. Stanojevic and V. B. Stanojevic, “Generalizations of the Sidon-Teljakovskii theorem,” Proc. Amer. Math. Soc., 101, No. 4, 679–684 (1987).Google Scholar
  14. 14.
    M. Buntinas and N. Tanovic-Miller, “New integrability and L 1-convergence classes for even trigonometric series,” Rad. Mat., 6, 149–170 (1990).Google Scholar
  15. 15.
    G. A. Fomin, “On convergence of Fourier series in the mean,” Mat. Sb., 110, No. 2, 251–265 (1979).Google Scholar
  16. 16.
    S. A. Telyakovskii, “Conditions for the integrability of trigonometric series and their application to the investigation of linear summation methods for Fourier series,” Izv. Akad. Nauk SSSR, Ser. Mat., 28, No. 6, 1209–1236 (1964).Google Scholar
  17. 17.
    P. V. Zaderei, “On conditions for the integrability of multiple trigonometric series,” Ukr. Mat. Zh., 44, No. 3, 340–365 (1992).Google Scholar
  18. 18.
    S. A. Telyakovskii, “Estimation of the norm of a function in terms of its Fourier coefficients convenient for problems of approximation theory,” Tr. Mat. Inst. Akad. Nauk SSSR, 109, 65–97 (1971).Google Scholar
  19. 19.
    P. V. Zaderei, “On convergence of Fourier series in the mean,” Ukr. Mat. Zh., 41, No. 4, 562–568 (1989).Google Scholar
  20. 20.
    A. S. Belov, “On conditions for the convergence (boundedness) of partial sums of trigonometric series in the mean,” in: Metric Theory of Functions and Related Problems of Analysis [in Russian], AFTs, Moscow (1999).Google Scholar
  21. 21.
    A. Zygmund, Trigonometric Series [Russian translation], Vol. 1, Mir, Moscow (1965).Google Scholar
  22. 22.
    A. Zygmund, Trigonometric Series [Russian translation], Vol. 2, Mir, Moscow (1965).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • P. V. Zaderei
    • 1
  • B. A. Smal'
    • 2
  1. 1.Kiev University of Technology and DesignKiev
  2. 2.Volyn UniversityLuts'k

Personalised recommendations