Skip to main content
Log in

Organo-geochemical and stable isotope indicators ofenvironmental change in a marl lake, Malham Tarn, North Yorkshire,U.K.

  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Sediments of the marl lake Malham Tarn located in NW Englandpreserve an environmental record since 12 Ka. Eight Holocene pollen zones wereidentified, and the δ13C of total organic carbon (TOC) showsthree stratigraphic divisions. The basal clay unit and overlayingsand/clay/marl unit have δ13C of −24‰which decreases at the base of the principal marl unit to a mean value around−30‰, whilst the topmost black marl unit δ13Cincreases to −28‰ at the surface. Representative samples of theseunits were selected for analysis of n-alkanes andn-fatty acids and their δ13C.Samples of modern Chara and peat were analysed forcomparison. The clay unit has a minor contribution of redeposited matureorganic matter and autochthonous algae, the marl unit a high contribution ofChara, and the dark marl unit has a high contribution fromhigher plants. Compound-specific δ13C revealssystematic differences between alkanes and fatty acids of different chainlength. The major shift in δ13C in the short and medium chainfatty acids are probably due to the decreasing influence of carbonate rockflour as source of DIC. The major shift in δ13C in the longchain n-fatty acids andn-alkanes could reflect the lower atmosphericCO2 concentration at Last Glacial. The negative shift of short chainfatty acids in organic rich dark marls reflects introduction of detrital peatinto the lake. The δ13C results show a dramatic change fromdominance of autochthonous plus eroded sources up to Pollen Zone IV, then slowcolonisation of the hinterland by higher plants, followed by constantChara contributions throughout the deposition of the marl,and a further increase of higher plant material after the rise in water levelin 1791.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrajano T.A. Jr., Murphy D.E., Fang J., Comet P. and Brooks J.M. 1994. 13C/12C ratios in individual fatty acids of marine mytilids with and without bacterial symbionts. Org. Geochem. 21: 611-617.

    Google Scholar 

  • Barnes M.A. and Barnes W.C. 1978. Organic compounds in lake sediments. In: Lerman A. (ed.), Lakes: Chemistry, Geology, Physics. Springer, Berlin, pp. 127-152.

    Google Scholar 

  • Bird M.I., Summons R.E., Gagan M.K., Roksandic Z., Dowling L., Head J. et al. 1995. Terrestrial vegetation change inferred fromn-alkane δ13C analysis in the marine environment. Geoch. Cosmoch. Acta 59: 2853-2857.

    Google Scholar 

  • Blumer M., Guillard R.R.L. and Chase T. 1971. Hydrocarbons of marine plankton. Mar. Biol. 8: 183-189.

    Google Scholar 

  • Brincat D., Yamada K., Ishiwatari R., Uemura H. and Naraoka H. 2000. Molecular-isotopic stratigraphy of long-chainn-alkanes in Lake Baikal Holocene and glacial age sediments. Org. Geochem. 31: 287-294.

    Google Scholar 

  • Brooks P.W., Eglinton G., Gaskell S.J., McHugh D.J., Maxwell J.R. and Philp R.P. 1976. Lipids in recent sediments I. Straight-chain hydrocarbons and carboxylic acids of some temperature lacustrine and sub-tropical lagoonal / tidal flat sediments. Chem. Geol. 18: 21-38.

    Google Scholar 

  • Burchardt B. and Fritz P. 1980. Environmental isotopes as environmental and climatological indicators. In: Fritz P. and Fontes J.Ch. (eds), Handbook of Environmental Isotope Geochemistry. The Terrestrial Environment Vol. 1. Elsevier, Amsterdam, pp. 473-504.

    Google Scholar 

  • Coletta P., Pentecost A. and Spiro B. 2001. Stable isotope in charophyte incrustrations: relationship with climate and water chemistry. Paleogeogr. Palaeoclim. Palaeoecol 173: 9-19.

    Google Scholar 

  • Collister J.W., Rieley G., Stern B., Eglinton G. and Fry B. 1994. Compound-specific δ13C analyses of leaf lipids from plants with differing carbon dioxide metabolisms. Org. Geochem. 21: 619-627.

    Google Scholar 

  • Cranwell P.A. 1974. Monocarboxylic acids in lake sediments: indicators derived from terrestrial and aquatic biota of paleoenvironmetal trophic levels. Chem. Geol. 14: 1-14.

    Google Scholar 

  • Cranwell P.A. 1984. Lipid geochemistry of sediments from Upton Broad, a small productive lake. Org. Geochem. 7: 25-37.

    Google Scholar 

  • Deines P. 1980. The isotopic composition of reduced organic carbon. In: Fritz P. and Fontes J.C. (eds), Handbook of Environmental Geochemistry. The Terrestrial Environment, Part A Vol. 1. Elsevier Scientific Publishing Company, Amsterdam, pp. 329-406.

    Google Scholar 

  • Duan Y., Wen Q., Zheng G., Luo B. and Lanhua M. 1997. Isotopic composition and probable origin of individual fatty acids in modern sediments from Ruoergai Marsh and Nansha Sea, China. Org. Geochem. 27: 583-589.

    Google Scholar 

  • Eglinton G. and Calvin M. 1967. Chemical fossils. Sci. Am. 216: 32-43.

    Google Scholar 

  • Eglinton G. and Hamilton R.J. 1967. Leaf epicuticular waxes. Science 156: 1322-1335.

    Google Scholar 

  • Farquhar G.D., Ehleringer J.R. and Hubick K.T. 1989. Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40: 503-537.

    Google Scholar 

  • Ficken K.J., Barber K.E. and Eglinton G. 1998. Lipid biomarker, δ13C and plant macrofossil stratigraphy of a Scottish montane peat bog over the last two millennia. Org. Geochem. 28: 217-237.

    Google Scholar 

  • Ficken K.J., Li B., Swain D.L. and Eglinton G. 2000. An n-alkane proxy for the sedimentary input of submerged/floating fresh-water aquatic macrophytes. Organic Geochemistry 31: 745-749.

    Google Scholar 

  • Freeman K.H., Hayes J.M., Trendel J.M. and Albrecht P. 1990. Evidence from carbon isotope measurements for diverse origin of sedimentary hydrocarbons. Nature 343: 254-256.

    Google Scholar 

  • Fryer G. 1991. Malham Tarn. Biologist 38: 81-83.

    Google Scholar 

  • Giger W., Schaffner C. and Wakeham S.G. 1980. Aliphatic and olefinic hydrocarbons in recent sediments of Greifensee, Switzerland. Geochim. Cosmochim. Acta 44: 119-129.

    Google Scholar 

  • Godwin H. 1975. History of the British Flora. 2nd edn. Cambridge University Press, London, 545 pp.

    Google Scholar 

  • Hakansson S. 1985. A review of various factors influencing the stable carbon isotope ratio of organic lake sediments by the change from glacial to post-glacial environmental conditions. Quat. Sci. Rev. 4: 135-146.

    Google Scholar 

  • Hammarlund D. 1992. A distinct δ13C decline in organic lake sediments at the Pleistocene-Holocene transition in southern Sweden. Boreas 22: 236-243.

    Google Scholar 

  • Hammarlund D., Edwards T.W.D., Bjorck S., Buchardt B. and Wohlfarth B. 1999. Climate and environment during the Younger Dryas (GS-1) as reflected by composite stable isotope records of lacustrine carbonates at Torreberga, southern Sweden. J. Quat. Sci. 14: 17-28.

    Google Scholar 

  • Holmes P.F. 1965. The natural history of Malham Tarn. Field Studies 2: 199-223.

    Google Scholar 

  • Huang Y., Eglinton G., Ineson P.M., Latter R., Bol D.D. and Harkness D. 1997. Absence of carbon isotope fractionation of individualn-alkanes in a 23 year field decomposition experiment with Calluna vulgaris. Org. Geochem. 26: 497-501.

    Google Scholar 

  • Huang Y., Street-Perrot F.A., Perrott R.A., Metzger P. and Eglinton G. 1999. Glacial-interglacial environmental changes inferred from molecular and compound-specific δ13C analyses of sediments from Sacred Lake, Mt. Kenya. Geochim. Cosmochim. Acta 63 9: 1383-1404.

    Google Scholar 

  • Jones T.P., Fortier S.M., Pentecost A. and Collinson M.E. 1996. Stable carbon and oxygen isotopic compositions of recent charophyte oosporangia and water from Malham Tarn, U.K.: palaeontological implications. Biogechemistry 34: 99-112.

    Google Scholar 

  • Kolattukudy P.E., Croteau R. and Buckner J.S. 1976. Biochemistry of plant waxes. In: Kolattukudy P.E. (ed.), Chemistry and Biochemistry of Natural Waxes. Elsevier, Amsterdam, pp. 289-347.

    Google Scholar 

  • Krishnamurthy R.V. and Epstein S. 1990. Glacial-interglacial excursion in the concentration of atmospheric CO2: effect in the 13C/12C ratio in wood cellulose. Tellus 42b: 423-434.

    Google Scholar 

  • Leavitt S.W. and Danzer S.R. 1992. 13C variations in C3 plants over the past 50,000 years. Radiocarbon 34: 783-791.

    Google Scholar 

  • Leuenberger M., Siegenthaler U. and Langway C.C. 1992. Carbons isotope composition of atmospheric CO2 during the last ice age from an Antartic ice core. Nature 357: 488-490.

    Google Scholar 

  • Lockheart M.J., Van Bergen P.F. and Evershed R.P. 1997. Variations in the stable carbon isotope compositions of individual lipids of modern angiosperms; implications for the study of higher land plant-derived sedimentary organic matter. Org. Geochem 26: 137-153.

    Google Scholar 

  • Marino B.D., McElory M.B., Salawich R.J. and Spaulding W.G. 1992. Glacial-to-interglacial variations in the carbon isotopic composition of atmospheric CO2. Nature 357: 461-466.

    Google Scholar 

  • Mayer B. and Schwark L. 1999. A 15,000-year stable isotope record from sediments of Lake Steisslingen, Southwest Germany. Chem. Geol. 161: 315-337.

    Google Scholar 

  • Meyers P.A. and Eadie B.J. 1993. Sources, degradation and recycling of organic matter associated with sinking particles in Lake Michigan. Org. Geochem. 20: 47-56.

    Google Scholar 

  • Meyers P.A. and Ishiwatari R. 1993a. Lacustrine organic geochemistry. An overview indicators of organic matter sources and diagenesis in lake sediments. Org. Geochem. 20: 867-900.

    Google Scholar 

  • Meyers P.A. and Ishiwatari R. 1993b. The early diagenesis of organic matter in lacustrine sediments. In: Engel M.H. and Macko S.A. (eds), Organic Geochemistry. Principles and Applications. Plenum Press, New York, pp. 185-209.

    Google Scholar 

  • Öldenburg T.B.P., Rullkötter J., Böttcher M.E. and Nissenbaum A. 2000. Molecular and isotopic characterization of organic matter in recent and sub-recent sediments from the Dead Sea. Org. Geochem. 31: 251-265.

    Google Scholar 

  • O'Leary M.H. 1981. Carbon isotopic fractionation in plants. Phytochemistry 20: 553-567.

    Google Scholar 

  • Osmond C.B., Winter K. and Ziegler H. 1982. Functional significance of different pathways of CO2 fixation in photosynthesis. In: Lange O.L., Nobel P.S., Osmond C.B. and Ziegler H. (eds), Physiological Plant Ecology II. Water relations and carbon assimilation. Springer-Verlag, New York, pp. 479-547.

    Google Scholar 

  • Ostrom P.H., Ostrom N.E., Henry J., Eadie B.J., Meyers P.A. and Robbins J.A. 1998. Changes in the trophic state of Lake Erie: discordance between molecular δ13C and bulk d C sedimentary records. Chem. Geol. 152: 163-179.

    Google Scholar 

  • Pentecost A. 2000. Some observations on the erosion of Tarn Moss by the waters of Malham Tarn. Field Studies 9: 569-581.

    Google Scholar 

  • Pentecost A., Spiro B., Coletta P. and Nuñez R. 2000. Palaeoenvironmental interpretation of the early Postglacial sedimentary record of a marl lake using biostratigraphy and stable isotopes (Malham Tarn, North Yorkshire) Conf. Abs.5 (2000):86. Cambridge Publications (eds).

  • Pigott C.D. and Pigott M.E. 1963. Late-glacial and post-glacial deposits at Malham, Yorkshire. New Phytologist 62: 317-343.

    Google Scholar 

  • Pigott M.E. and Pigott C.D. 1959. Stratigraphy and pollen analysis of Malham Tarn and Tarn Moss. Field Studies 1: 84-101.

    Google Scholar 

  • Rieley G., Collier R.J., Jones D.M., Eglinton G., Eakin P.A. and Fallick A.E. 1991. Sources of sedimentary lipids deduced from stable carbon-isotope analyses of individual compounds. Nature 352: 425-426.

    Google Scholar 

  • Sargent J.R. and Whittle K.J. 1981. Lipids and hydrocarbons in the marine food web. In: Longhurst A.R. (ed.), Analysis of Marine Ecosystems. Academic Press, London, pp. 491-533.

    Google Scholar 

  • Shameel M. 1990. Phycochemical studies on fatty acids from certain seaweeds. Bot. mar. 33: 429-432.

    Google Scholar 

  • Spooner N., Rieley G., Collister J.W., Lander M., Cranwell P.A. and Maxwell J.R. 1994. Stable carbon isotopic correlation of individual biolipids in aquatic organisms and a lake bottom sediment. Org. Geochem. 21: 823-827.

    Google Scholar 

  • Street-Perrott F.A., Huang Y., Perrott A., Eglinton G., Baker P., Khelifa L. et al. 1997. Impact of lower atmospheric carbon dioxide on tropical mountain ecosystems. Science 278: 1422-1426.

    Google Scholar 

  • Street-Perrott F.A., Huang Y., Perrott R.A. and Eglinton G. 1998. Carbon isotopes in lake sediments and peats of last glacial age; implications for the global carbon cycle. In: Griffiths H. (ed.), Stable Isotopes Integration of Biological, Ecological and Geochemical Process. Bios Scientific Publishers Ltd, Oxford, pp. 381-397.

    Google Scholar 

  • Turney C.S.M., Beerling D.J., Harkeness D.D., Lowe J.J. and Scott E.M. 1997. Stable carbon isotope variations in northwest Europe during the last glacial-interglacial transition. J. Quat. Sci. 12: 339-344.

    Google Scholar 

  • Van der Water P.K., Leavitt S.W. and Betancourt J.L. 1994. Trends in stomatal density and C13/C12 ratios of Pinus flexilis needles during the last glacial-interglacial cycle. Science 264: 239-243.

    Google Scholar 

  • Viso A.C., Pesando D., Bernard P. and Marty J.C. 1993. Lipid components of the Mediterranean seagrass Posidonia Oceanica. Phytochemistry 34: 381-387.

    Google Scholar 

  • Whittington G., Fallick A.E. and Edwards K.J. 1996. Stable oxygen isotope and pollen records from eastern Scotland and a consideration of Late-glacial and early Holocene climate change for Europe. J. Quat. Sci. 11: 327-340.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Nuñez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nuñez, R., Spiro, B., Pentecost, A. et al. Organo-geochemical and stable isotope indicators ofenvironmental change in a marl lake, Malham Tarn, North Yorkshire,U.K.. Journal of Paleolimnology 28, 403–417 (2002). https://doi.org/10.1023/A:1021615313641

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021615313641

Navigation