Journal of Mammalian Evolution

, Volume 9, Issue 1–2, pp 137–160 | Cite as

The Postcranial Morphology of Ptilocercus lowii (Scandentia, Tupaiidae): An Analysis of Primatomorphan and Volitantian Characters

  • Eric J. Sargis
Article

Abstract

The eutherian orders Scandentia, Primates, Dermoptera, and Chiroptera have been grouped together by many morphologists, using various methods and data sets, into the cohort Archonta. Molecular evidence, however, has supported a clade (called Euarchonta) that includes Scandentia, Primates, and Dermoptera, but not Chiroptera. Within Archonta, some systematists have grouped Dermoptera and Chiroptera in Volitantia, while others have grouped Dermoptera and Primates in Primatomorpha. The order Scandentia includes the single family Tupaiidae, with two subfamilies, Ptilocercinae and Tupaiinae. Ptilocercinae is represented only by Ptilocercus lowii, which has been said to be the taxon most closely approximating the ancestral tupaiid. However, most researchers working on archontan phylogeny typically do not treat the order Scandentia as being polymorphic. They usually use Tupaia to represent Scandentia, despite the fact that Ptilocercus is quite distinct from Tupaia and has been argued to be the more plesiomorphic of the two taxa. In this study, a character analysis was performed on postcranial features that have been used to support the competing Primatomorpha and Volitantia hypotheses. In recognition of the polymorphic nature of Scandentia, taxonomic sampling within Scandentia was increased to include Ptilocercus. The postcranium of Ptilocercus was compared to that of tupaiines, euprimates, plesiadapiforms, dermopterans, and chiropterans. Several character states used to support either Primatomorpha or Volitantia, while not found in Tupaia, were found in Ptilocercus. While these features may have evolved independently in Ptilocercus, it is perhaps more likely that they represent features that first evolved in the ancestral archontan and were then lost in one of the extant orders. This character analysis greatly reduces the supportive evidence for the Primatomorpha hypothesis.

Tupaiids Primatomorpha Volitantia Archonta postcranial morphology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

LITERATURE CITED

  1. Adkins, R. M., and Honeycutt, R. L. (1991). Molecular phylogeny of the superorder Archonta. Proc. Natl. Acad. Sci. USA 88: 10317–10321.PubMedGoogle Scholar
  2. Adkins, R. M., and Honeycutt, R. L. (1993). A molecular examination of archontan and chiropteran monophyly. In: Primates and their Relatives in Phylogenetic Perspective, R. D. E. MacPhee, ed., pp. 227–249, Plenum Press, New York.Google Scholar
  3. Allard, M. W., McNiff, B. E., and Miyamoto, M. M. (1996). Support for interordinal eutherian relationships with an emphasis on primates and their archontan relatives. Mol. Phylogenet. Evol. 5: 78–88.CrossRefPubMedGoogle Scholar
  4. Bailey, W. J., Slightom, J. L., and Goodman, M. (1992). Rejection of the “flying primate” hypothesis by phylogenetic evidence from the E-globin gene. Science 256: 86–89.PubMedGoogle Scholar
  5. Beard, K. C. (1989). Postcranial Anatomy, Locomotor Adaptations, and Paleoecology of Early Cenozoic Plesiadapidae, Paromomyidae, and Micromomyidae (Eutheria, Dermoptera). Ph.D. Dissertation, Johns Hopkins University.Google Scholar
  6. Beard, K. C. (1990). Gliding behavior and paleoecology of the alleged primate family Paromomyidae (Mammalia, Dermoptera). Nature 345: 340–341.CrossRefGoogle Scholar
  7. Beard, K. C. (1991). Vertical postures and climbing in the morphotype of Primatomorpha: Implications for locomotor evolution in primate history. In: Origine(s) de la Bipédie chez les Hominidés, Y. Coppens and B. Senut, eds., pp. 79–87, CNRS, Paris.Google Scholar
  8. Beard, K. C. (1993a). Origin and evolution of gliding in Early Cenozoic Dermoptera (Mammalia, Primatomorpha). In: Primates and their Relatives in Phylogenetic Perspective, R. D. E. MacPhee, ed., pp. 63–90, Plenum Press, New York.Google Scholar
  9. Beard, K. C. (1993b). Phylogenetic systematics of the Primatomorpha, with special reference to Dermoptera. In: Mammal Phylogeny: Placentals, F. S. Szalay, M. J. Novacek, and M. C. McKenna, eds., pp. 129–150, Springer-Verlag, New York.Google Scholar
  10. Bloch, J. I., and Silcox, M. T. (2001). New basicrania of Paleocene-Eocene Ignacius: Re-evaluation of the plesiadapiform-dermopteran link. Amer. J. Phys. Anthropol. 116: 184–198.CrossRefGoogle Scholar
  11. Boyer, D. M., Bloch, J. I., and Gingerich, P. D. (2001). New skeletons of Paleocene paromomyids (Mammalia, ?Primates): Were they mitten gliders? J. Vert. Paleontol. 21 (Supp. to No. 3): 5A.Google Scholar
  12. Butler, P. M. (1972). The problem of insectivore classification. In: Studies in Vertebrate Evolution, K. A. Joysey and T. S. Kemp, eds., pp. 253–265, Oliver and Boyd, Edinburgh.Google Scholar
  13. Butler, P. M. (1980). The tupaiid dentition. In: Comparative Biology and Evolutionary Relationships of Tree Shrews, W. P. Luckett, ed., pp. 171–204, Plenum, New York.Google Scholar
  14. Campbell, C. B. G. (1966a). Taxonomic status of tree shrews. Science 153: 436.PubMedGoogle Scholar
  15. Campbell, C. B. G. (1966b). The relationships of the tree shrews: The evidence of the nervous system. Evolution 20: 276–281.Google Scholar
  16. Campbell, C. B. G. (1974). On the phyletic relationships of the tree shrews. Mammal. Rev. 4: 125–143.Google Scholar
  17. Carleton, A. (1941). A comparative study of the inferior tibio-fibular joint. J. Anat. 76: 45–55.Google Scholar
  18. Carlsson, A. (1922). Über die Tupaiidae und ihre Beziehungen zu den Insectivora und den Prosimiae. Acta Zool. 3: 227–270.Google Scholar
  19. Cartmill, M., and MacPhee, R. D. E. (1980). Tupaiid affinities: The evidence of the carotid arteries and cranial skeleton. In: Comparative Biology and Evolutionary Relationships of Tree Shrews, W. P. Luckett, ed., pp. 95–132, Plenum, New York.Google Scholar
  20. Chopra, S. R. K., and Vasishat, R. N. (1979). Sivalik fossil tree shrew from Haritalyangar, India. Nature 281: 214–215.Google Scholar
  21. Chopra, S. R. K., Kaul, S., and Vasishat, R. N. (1979). Miocene tree shrews from the Indian Sivaliks. Nature 281: 213–214.Google Scholar
  22. Cronin, J. E., and Sarich, V. M. (1980). Tupaiid and Archonta phylogeny: The macromolecular evidence. In: Comparative Biology and Evolutionary Relationships of Tree Shrews, W. P. Luckett, ed., pp. 293–312, Plenum, New York.Google Scholar
  23. Dagosto, M. (1985). The distal tibia of primates with special reference to the Omomyidae. Int. J. Primatol. 6: 45–75.Google Scholar
  24. Dagosto, M. (1988). Implications of postcranial evidence for the origin of euprimates. J. Hum. Evol. 17: 35–56.CrossRefGoogle Scholar
  25. Dutta, A. K. (1975). Micromammals from Siwaliks. Indian Minerals 29: 76–77.Google Scholar
  26. Emmons, L. H. (2000). Tupai: A Field Study of Bornean Treeshrews, University of California Press, Berkeley.Google Scholar
  27. Goodman, M., Bailey, W. J., Hayasaka, K., Stanhope, M. J., Slightom, J., and Czelusniak, J. (1994). Molecular evidence on primate phylogeny from DNA sequences. Amer. J. Phys. Anthropol. 94: 3–24.Google Scholar
  28. Gould, E. (1978). The behavior of the moonrat, Echinosorex gymnurus (Erinaceidae) and the pentail tree shrew, Ptilocercus lowii (Tupaiidae) with comments on the behavior of other Insectivora. Z. Tierpsychol. 48: 1–27.Google Scholar
  29. Graur, D., Duret, L., and Gouy, M. (1996). Phylogenetic position of the order Lagomorpha (rabbits, hares and allies). Nature 379: 333–335.PubMedGoogle Scholar
  30. Gregory, W. K. (1910). The orders of mammals. Bull. Amer. Mus. Nat. Hist. 27: 1–524.Google Scholar
  31. Haeckel, E. (1866). Generelle Morphologie Der Organismen, Georg Reimer, Berlin.Google Scholar
  32. Hamrick, M. W., Rosenman, B. A., and Brush, J. A. (1999). Phalangeal morphology of the Paromomyidae (?Primates, Plesiadapiformes): The evidence for gliding behavior reconsidered. Amer. J. Phys. Anthropol. 109: 397–413.Google Scholar
  33. Honeycutt, R. L., and Adkins, R. M. (1993). Higher level systematics of eutherian mammals: An assessment of molecular characters and phylogenetic hypotheses. Ann. Rev. Ecol. Syst. 24: 279–305.CrossRefGoogle Scholar
  34. Jacobs, L. L. (1980). Siwalik fossil tree shrews. In: Comparative Biology and Evolutionary Relationships of Tree Shrews, W. P. Luckett, ed., pp. 205–216, Plenum, New York.Google Scholar
  35. Jane, J. A., Campbell, C. B. G., and Yashon, D. (1965). Pyramidal tract: A comparison of two prosimian primates. Science 147: 153–155.PubMedGoogle Scholar
  36. Johnson, J. I., and Kirsch, J. A. W. (1993). Phylogeny through brain traits: Interordinal relationships among mammals including Primates and Chiroptera. In: Primates and their Relatives in Phylogenetic Perspective, R. D. E. MacPhee, ed., pp. 293–331, Plenum Press, New York.Google Scholar
  37. Kay, R. F., Thorington, R. W., and Houde, P. (1990). Eocene plesiadapiform shows affinities with flying lemurs not primates. Nature 345: 342–344.CrossRefGoogle Scholar
  38. Kay, R. F., Thewissen, J. G. M., and Yoder, A. D. (1992). Cranial anatomy of Ignacius graybullianus and the affinities of the Plesiadapiformes. Amer. J. Phys. Anthropol. 89: 477–498.Google Scholar
  39. Killian, J. K., Buckley, T. R., Stewart, N., Munday, B. L., and Jirtle, R. L. (2001). Marsupials and eutherians reunited: Genetic evidence for the Theria hypothesis of mammalian evolution. Mammal. Gen. 12: 513–517.CrossRefGoogle Scholar
  40. Krause, D. W. (1991). Were paromomyids gliders? Maybe, maybe not. J. Hum. Evol. 21: 177–188.Google Scholar
  41. Kriz, M., and Hamrick, M. W. (2001). The postcranial evidence for primate superordinal relationships. Amer. J. Phys. Anthropol. Supp. 32: 93.Google Scholar
  42. Le Gros Clark, W. E. (1924a). The myology of the tree shrew (Tupaia minor). Proc. Zool. Soc. Lond. 1924: 461–497.Google Scholar
  43. Le Gros Clark, W. E. (1924b). On the brain of the tree shrew (Tupaia minor). Proc. Zool. Soc. Lond. 1924: 1053–1074.Google Scholar
  44. Le Gros Clark, W. E. (1925). On the skull of Tupaia. Proc. Zool. Soc. Lond. 1925: 559–567.Google Scholar
  45. Le Gros Clark, W. E. (1926). On the anatomy of the pen-tailed tree shrew (Ptilocercus lowii). Proc. Zool. Soc. Lond. 1926: 1179–1309.Google Scholar
  46. Lemelin, P. (2000). Micro-anatomy of the volar skin and interordinal relationships of primates. J. Hum. Evol. 38: 257–267.CrossRefPubMedGoogle Scholar
  47. Liu, F.-G. R., and Miyamoto, M. M. (1999). Phylogenetic assessment of molecular and morphological data for eutherian mammals. Syst. Biol. 48: 54–64.CrossRefPubMedGoogle Scholar
  48. Liu, F.-G. R., Miyamoto, M. M., Freire, N. P., Ong, P. Q., Tennant, M. R., Young, T. S., and Gugel, K. F. (2001). Molecular and morphological supertrees for eutherian (placental) mammals. Science 291: 1786–1789.PubMedGoogle Scholar
  49. Luckett, W. P. (ed.) (1980). Comparative Biology and Evolutionary Relationships of Tree Shrews, Plenum Press, New York.Google Scholar
  50. Luckett, W. P. (1993). Developmental evidence from the fetal membranes for assessing archontan relationships. In: Primates and their Relatives in Phylogenetic Perspective, R. D. E. MacPhee, ed., pp. 149–186, Plenum Press, New York.Google Scholar
  51. MacPhee, R. D. E. (1981). Auditory Regions of Primates and Eutherian Insectivores: Morphology, Ontogeny, and Character Analysis. Contrib. Primatol. 18: 1–282.Google Scholar
  52. MacPhee, R. D. E. (ed.) (1993). Primates and Their Relatives in Phylogenetic Perspective, Plenum Press, New York.Google Scholar
  53. Madsen, O., Scally, M., Douady, C. J., Kao, D. J., DeBry, R. W., Adkins, R. M., Amrine, H. M., Stanhope, M. J., de Jong, W. W., and Springer, M. S. (2001). Parallel adaptive radiations in two major clades of placental mammals. Nature 409: 610–614.PubMedGoogle Scholar
  54. Martin, R. D. (1966). Tree shrews: Unique reproductive mechanism of systematic importance. Science 152: 1402–1404.PubMedGoogle Scholar
  55. Martin, R. D. (1968a). Towards a new definition of primates. Man 3: 377–401.Google Scholar
  56. Martin, R. D. (1968b). Reproduction and ontogeny in tree shrews (Tupaia belangeri), with reference to their general behavior and taxonomic relationships. Z. Tierpsychol. 25: 409–532.PubMedGoogle Scholar
  57. Martin, R. D. (1990). Primate Origins and Evolution, Princeton University Press, Princeton.Google Scholar
  58. McKenna, M. C. (1966). Paleontology and the origin of the primates. Folia Primatol. 4: 1–25.PubMedGoogle Scholar
  59. McKenna, M. C. (1975). Toward a phylogenetic classification of the Mammalia. In: Phylogeny of the Primates: A Multidisciplinary Approach, W. P. Luckett and F. S. Szalay, eds., pp. 21–46, Plenum Press, New York.Google Scholar
  60. McKenna, M. C., and Bell, S. K. (1997). Classification of Mammals Above the Species Level, Columbia University Press, New York.Google Scholar
  61. Mein, P., and Ginsburg, L. (1997). Les mammiféres du gisement miocéne inférieur de Li Mae Long, Thailande: Systématique, biostratigraphie et paléoenvironnement. Geodiversitas 19: 783–844.Google Scholar
  62. Miyamoto, M. M. (1996). A congruence study of molecular and morphological data for eutherian mammals. Mol. Phylogenet. Evol. 6: 373–390.CrossRefPubMedGoogle Scholar
  63. Murphy, W. J., Eizirik, E., Johnson, W. E., Zhang, Y. P., Ryder, O. A., and O'Brien, S. J. (2001a). Molecular phylogenetics and the origins of placental mammals. Nature 409: 614–618.PubMedGoogle Scholar
  64. Murphy, W. J., Eizirik, E., O'Brien, S. J., Madsen, O., Scally, M., Douady, C. J., Teeling, E. C., Ryder, O. A., Stanhope, M. J., de Jong, W. W., and Springer, M. S. (2001b). Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294: 2348–2351.PubMedGoogle Scholar
  65. Napier, J. R., and Napier, P. H. (1967). A Handbook of Living Primates, Academic, London.Google Scholar
  66. Novacek, M. J. (1980). Cranioskeletal features in tupaiids and selected Eutheria as phylogenetic evidence. In: Comparative Biology and Evolutionary Relationships of Tree Shrews, W. P. Luckett, ed., pp. 35–93, Plenum, New York.Google Scholar
  67. Novacek, M. J. (1982). Information for molecular studies from anatomical and fossil evidence on higher eutherian phylogeny. In: Macromolecular Sequences in Systematic and Evolutionary Biology, M. Goodman, ed., pp. 3–41, Plenum Press, New York.Google Scholar
  68. Novacek, M. J. (1986). The skull of leptictid insectivorans and the higher-level classification of eutherian mammals. Bull. Amer. Mus. Nat. Hist. 183: 1–112.Google Scholar
  69. Novacek, M. J. (1989). Higher mammal phylogeny: The morphological-molecular synthesis. In: The Hierarchy of Life, B. Fernholm, K. Bremer, and H. Jornvall, eds., pp. 421–435, Elsevier, Amsterdam.Google Scholar
  70. Novacek, M. J. (1990). Morphology, paleontology, and the higher clades of mammals. In: Current Mammalogy, H. H. Genoways, ed., pp. 507–543, Plenum Press, New York.Google Scholar
  71. Novacek, M. J. (1992). Mammalian phylogeny: Shaking the tree. Nature 356: 121–125.PubMedGoogle Scholar
  72. Novacek, M. J. (1993). Reflections on higher mammalian phylogenetics. J. Mammal. Evol. 1: 3–30.Google Scholar
  73. Novacek, M. J. (1994). Morphological and molecular inroads to phylogeny. In: Interpreting the Hierarchy of Nature, L. Grande and O. Rieppel, eds., pp. 85–131, Academic Press, New York.Google Scholar
  74. Novacek, M. J., and Wyss, A. R. (1986). Higher-level relationships of the recent eutherian orders: Morphological evidence. Cladistics 2: 257–287.Google Scholar
  75. Novacek, M. J., Wyss, A. R., and McKenna, M. C. (1988). The major groups of eutherian mammals. In: The Phylogeny and Classification of the Tetrapods, Vol. 2: Mammals, M. J. Benton, ed., pp. 31–71, Clarendon Press, Oxford.Google Scholar
  76. Porter, C. A., Goodman, M., and Stanhope, M. J. (1996). Evidence on mammalian phylogeny from sequences of exon 28 of the von Willebrand factor gene. Mol. Phylogenet. Evol. 5: 89–101.CrossRefPubMedGoogle Scholar
  77. Qiu, Z. (1986). Fossil tupaiid from the hominoid locality of Lufeng, Yunnan. Vert. PalAsiatica 24: 308–319.Google Scholar
  78. Rose, K. D. (1999). Postcranial skeleton of Eocene Leptictidae (Mammalia), and its implications for behavior and relationships. J. Vert. Paleontol. 19: 355–372.Google Scholar
  79. Rose, K. D., and Lucas, S. G. (2000). An early Paleocene palaeanodont (Mammalia, ?Pholidota) from New Mexico, and the origin of Palaeanodonta. J. Vert. Paleontol. 20: 139–156.Google Scholar
  80. Runestad, J. A., and Ruff, C. B. (1995). Structural adaptations for gliding in mammals with implications for locomotor behavior in paromomyids. Amer. J. Phys. Anthropol. 98: 101–119.Google Scholar
  81. Sargis, E. J. (1999). Tree shrews. In: Encyclopedia of Paleontology, R. Singer, ed., pp. 1286–1287, Fitzroy Dearborn, Chicago.Google Scholar
  82. Sargis, E. J. (2000). The Functional Morphology of the Postcranium of Ptilocercus and Tupaiines (Scandentia, Tupaiidae): Implications for the Relationships of Primates and other Archontan Mammals. Ph.D. Dissertation, City University of New York.Google Scholar
  83. Sargis, E. J. (2001a). A preliminary qualitative analysis of the axial skeleton of tupaiids (Mammalia, Scandentia): Functional morphology and phylogenetic implications. J. Zool. Lond. 253: 473–483.Google Scholar
  84. Sargis, E. J. (2001b). The phylogenetic relationships of archontan mammals: Postcranial evidence. J. Vert. Paleontol. 21 (Supp. to No. 3): 97A.Google Scholar
  85. Sargis, E. J. (2001c). The grasping behaviour, locomotion and substrate use of the tree shrews Tupaia minor and T. tana (Mammalia, Scandentia). J. Zool. Lond. 253: 485–490.Google Scholar
  86. Sargis, E. J. (2002a). Functional morphology of the forelimb of tupaiids (Mammalia, Scandentia) and its phylogenetic implications. J. Morph. 253: 10–42.CrossRefPubMedGoogle Scholar
  87. Sargis, E. J. (2002b). Functional morphology of the hindlimb of tupaiids (Mammalia, Scandentia) and its phylogenetic implications. J. Morph. 254: 149–185.CrossRefPubMedGoogle Scholar
  88. Sargis, E. J. (in press) A multivariate analysis of the postcranium of tree shrews (Scandentia, Tupaiidae) and its taxonomic implications. Mammalia.Google Scholar
  89. Schlosser-Sturm, E., and Schliemann, H. (1995). Morphology and function of the shoulder joint of bats (Mammalia: Chiroptera). Z. zool. Syst. Evolut.-forsch. 33: 88–98.Google Scholar
  90. Schmitz, J., Ohme, M., and Zischler, H. (2000). The complete mitochondrial genome of Tupaia belangeri and the phylogenetic affiliation of Scandentia to other eutherian orders. Mol. Biol. Evol. 17: 1334–1343.PubMedGoogle Scholar
  91. Shoshani, J., Groves, C. P., Simons, E. L., and Gunnell, G. F. (1996). Primate phylogeny: Morphological vs molecular results. Mol. Phylogenet. Evol. 5: 102–154.CrossRefPubMedGoogle Scholar
  92. Shoshani, J., and McKenna, M. C. (1998). Higher taxonomic relationships among extant mammals based on morphology, with selected comparisons of results from molecular data. Mol. Phylogenet. Evol. 9: 572–584.CrossRefPubMedGoogle Scholar
  93. Silcox, M. T. (2001a). A phylogenetic analysis of Plesiadapiformes and their relationship to euprimates and other archontans. J. Vert. Paleontol. 21 (Supp. to No. 3): 101A.Google Scholar
  94. Silcox, M. T. (2001b). A Phylogenetic Analysis of Plesiadapiformes and Their Relationship to Euprimates and Other Archontans. Ph.D. Dissertation, Johns Hopkins University.Google Scholar
  95. Silcox, M. T. (2002). The phylogeny and taxonomy of plesiadapiforms. Amer. J. Phys. Anthropol. Supp. 34: 141–142.Google Scholar
  96. Simmons, N. B. (1994). The case for chiropteran monophyly. Amer. Mus. Nov. 3103: 1–54.Google Scholar
  97. Simmons, N. B. (1995). Bat relationships and the origin of flight. Symp. Zool. Soc. Lond. 67: 27–43.Google Scholar
  98. Simmons, N. B., and Quinn, T. H. (1994). Evolution of the digital tendon locking mechanism in bats and dermopterans: A phylogenetic perspective. J. Mammal. Evol. 2: 231–254.Google Scholar
  99. Simpson, G. G. (1945). The principles of classification and a classification of mammals. Bull. Amer. Mus. Nat. Hist. 85: 1–350.Google Scholar
  100. Smith, J. D., and Madkour, G. (1980). Penial morphology and the question of chiropteran phylogeny. In: Proceedings of the Fifth International Bat Research Conference, D. E. Wilson and A. L. Gardner, eds., pp. 347–365, Texas Tech Press, Lubbock, Texas.Google Scholar
  101. Stafford, B. J., and Thorington, R. W. (1998). Carpal development and morphology in archontan mammals. J. Morph. 235: 135–155.CrossRefPubMedGoogle Scholar
  102. Stanhope, M. J., Bailey, W. J., Czelusniak, J., Goodman, M., Si, J.-S., Nickerson, J., Sgouros, J. G., Singer, G. A. M., and Kleinschmidt, T. K. (1993). A molecular view of primate supraordinal relationships from the analysis of both nucleotide and amino acid sequences. In: Primates and their Relatives in Phylogenetic Perspective, R. D. E. MacPhee, ed., pp. 251–292, Plenum Press, New York.Google Scholar
  103. Stanhope, M. J., Smith, M. R., Waddell, V. G., Porter, C. A., Shivji, M. S., and Goodman, M. (1996). Mammalian evolution and the interphotoreceptor retinoid binding protein (IRBP) gene: Convincing evidence for several superordinal clades. J. Mol. Evol. 43: 83–92.PubMedGoogle Scholar
  104. Steele, D. G. (1973). Dental variability in the tree shrews (Tupaiidae). In: Craniofacial Biology of Primates: Symposium of the IVth International Congress of Primatology, Vol. 3, M. R. Zingeser, ed., pp. 154–179, Karger, Basel.Google Scholar
  105. Szalay, F. S. (1968). The beginnings of primates. Evolution 22: 19–36.Google Scholar
  106. Szalay, F. S. (1969). Mixodectidae, Microsyopidae, and the insectivore-primate transition. Bull. Amer. Mus. Nat. Hist. 140: 193–330.Google Scholar
  107. Szalay, F. S. (1977). Phylogenetic relationships and a classification of the eutherian Mammalia. In: Major Patterns in Vertebrate Evolution, M. K. Hecht, P. C. Goody, and B. M. Hecht, eds., pp. 315–374, Plenum Press, New York.Google Scholar
  108. Szalay, F. S. (1999). Review of “Classification of Mammals above the Species Level” by M.C. McKenna and S.K. Bell. J. Vert. Paleontol. 19: 191–195.Google Scholar
  109. Szalay, F. S., and Dagosto, M. (1980). Locomotor adaptations as reflected on the humerus of Paleogene primates. Folia Primatol. 34: 1–45.PubMedGoogle Scholar
  110. Szalay, F. S., and Dagosto, M. (1988). Evolution of hallucial grasping in the primates. J. Hum. Evol. 17: 1–33.CrossRefGoogle Scholar
  111. Szalay, F. S., and Drawhorn, G. (1980). Evolution and diversification of the Archonta in an arboreal milieu. In: Comparative Biology and Evolutionary Relationships of Tree Shrews, W. P. Luckett, ed., pp. 133–169, Plenum, New York.Google Scholar
  112. Szalay, F. S., and Lucas, S. G. (1993). Cranioskeletal morphology of archontans, and diagnoses of Chiroptera, Volitantia, and Archonta. In: Primates and their Relatives in Phylogenetic Perspective, R. D. E. MacPhee, ed., pp. 187–226, Plenum Press, New York.Google Scholar
  113. Szalay, F. S., and Lucas, S. G. (1996). The postcranial morphology of Paleocene Chriacus and Mixodectes and the phylogenetic relationships of archontan mammals. Bull. New Mex. Mus. Nat. Hist. Sci. 7: 1–47.Google Scholar
  114. Szalay, F. S., Rosenberger, A. L., and Dagosto, M. (1987). Diagnosis and differentiation of the order Primates. Yrbk. Phys. Anthropol. 30: 75–105.Google Scholar
  115. Teeling, E. C., Scally, M., Kao, D. J., Romagnoli, M. L., Springer, M. S., and Stanhope, M. J. (2000). Molecular evidence regarding the origin of echolocation and flight in bats. Nature 403: 188–192.CrossRefPubMedGoogle Scholar
  116. Thewissen, J. G. M., and Babcock, S. K. (1991). Distinctive cranial and cervical innervation of wing muscles: New evidence for bat monophyly. Science 251: 934–936.PubMedGoogle Scholar
  117. Thewissen, J. G. M., and Babcock, S. K. (1992). The origin of flight in bats. Bioscience 42: 340–345.Google Scholar
  118. Thewissen, J. G. M., and Babcock, S. K. (1993). The implications of the propatagial muscles of flying and gliding mammals for archontan systematics. In: Primates and their Relatives in Phylogenetic Perspective, R. D. E. MacPhee, ed., pp. 91–109, Plenum Press, New York.Google Scholar
  119. Tong, Y. (1988). Fossil tree shrews from the Eocene Hetaoyuan Formation of Xichuan, Henan. Vert. PalAsiatica 26: 214–220.Google Scholar
  120. Van Valen, L. M. (1965). Tree shrews, primates, and fossils. Evolution 19: 137–151.Google Scholar
  121. Waddell, P. J., Okada, N., and Hasegawa, M. (1999). Towards resolving the interordinal relationships of placental mammals. Syst. Biol. 48: 1–5.PubMedGoogle Scholar
  122. Wagner, J. A. (1855). Die Säugethiere in Abbildungen Nach Der Natur, Weiger, Leipzig.Google Scholar
  123. Wible, J. R. (1993). Cranial circulation and relationships of the colugo Cynocephalus (Dermoptera, Mammalia). Amer. Mus. Nov. 3072: 1–27.Google Scholar
  124. Wible, J. R., and Covert, H. H. (1987). Primates: Cladistic diagnosis and relationships. J. Hum. Evol. 16: 1–22.CrossRefGoogle Scholar
  125. Wible, J. R., and Martin, J. R. (1993). Ontogeny of the tympanic floor and roof in archontans. In: Primates and their Relatives in Phylogenetic Perspective, R. D. E. MacPhee, ed., pp. 111–148, Plenum Press, New York.Google Scholar
  126. Wible, J. R., and Novacek, M. J. (1988). Cranial evidence for the monophyletic origin of bats. Amer. Mus. Nov. 2911: 1–19.Google Scholar
  127. Wible, J. R., and Zeller, U. A. (1994). Cranial circulation of the pen-tailed tree shrew Ptilocercus lowii and relationships of Scandentia. J. Mammal. Evol. 2: 209–230.Google Scholar
  128. Wilson, D. E. (1993). Order Scandentia. In: Mammal Species of the World: A Taxonomic and Geographic Reference, D. E. Wilson and D. M. Reeder, eds., pp. 131–133, Smithsonian Institution Press, Washington, D.C.Google Scholar
  129. Wöhrmann-Repenning, A. (1979). Primate characters in the skull of Tupaia glis and Urogale everetti (Mammalia, Tupaiiformes). Senckenberg. Biol. 60: 1–6.Google Scholar
  130. Zeller, U. A. (1986a). Ontogeny and cranial morphology of the tympanic region of the Tupaiidae, with special reference to Ptilocercus. Folia Primatol. 47: 61–80.PubMedGoogle Scholar
  131. Zeller, U. A. (1986b). The systematic relations of tree shrews: Evidence from skull morphogenesis. In: Primate Evolution, J. G. Else and P. C. Lee, eds., pp. 273–280, Cambridge University Press, Cambridge.Google Scholar
  132. Zeller, U. A. (1987). Morphogenesis of the mammalian skull with special reference to Tupaia. In: Morphogenesis of the Mammalian Skull, H. J. Kuhn and U. A. Zeller, eds., pp. 17–50, Verlag Paul Parey, Hamburg.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Eric J. Sargis
    • 1
  1. 1.Department of AnthropologyYale UniversityNew Haven

Personalised recommendations