Skip to main content
Log in

Investigation on the Interaction of Bendazac with β-, Hydroxypropyl-β-, and γ-, yclodextrins

  • Published:
Journal of inclusion phenomena and macrocyclic chemistry Aims and scope Submit manuscript

Abstract

The interactions of Bendazac, a topical non-steroidal anti-inflammatory drug, withβ-cyclodextrin, hydroxypropyl-β-cyclodextrin and γ-cyclodextrinwere investigated to evaluate possibilities to improve the drug's poor water solubilityand eventually to enhance the topical delivery of Bendazac. Phase solubility studiesdemonstrated the ability of the selected cyclodextrins to complex with Bendazac andincrease drug solubility. The amount of solubilized Bendazac increased linearly withthe addition of each cyclodextrin according toAL type plots. 13C-NMR studiesshowed that the Bendazac A-ring was included in the cavity of the three cyclodextrins.The γ-cyclodextrin was also able to include the B-ring of Bendazac, forminga complex where one drug molecule fitted into two cyclodextrin molecules. Equimolarsolid systems of the drug with each cyclodextrin carrier were prepared using varioustechniques (physical mixing, spray-drying and freeze-drying). The results of differential scanning calorimetry and Fourier transform infrared analysis, performed on the solid systems, demonstrated that freeze-dried and spray-dried products had a high degree of amorphization and agreed with the hypothesis of the existence of drug–cyclodextrin interaction in the solid state. The cyclodextrins tested were able to improve the dissolution of Bendazac. The dissolution profile of the drug was also affected by the physico-chemical properties of each solid system, the freeze-dried products being the most rapidly dissolving forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.E.F. Reynolds: Martindale, The Extra Pharmacopoeia, 31st ed., p. 24, Royal Pharmaceutical Society, London (1996).

    Google Scholar 

  2. J.A. Balfour and S.P. Clissold: Drugs 39, 575 (1990).

    Google Scholar 

  3. J. Szejtli: Cyclodextrin Technology, Kluwer Academic Publishers, Dordrecht (1988).

    Google Scholar 

  4. D. Duchêne: New Trends in Cyclodextrins and Derivatives, Edition de Santé (1991).

  5. T. Loftsson and M.E. Brewster: J. Pharm. Sci. 85, 1017 (1996).

    Google Scholar 

  6. K. Uekama, F. Hirayama, and T. Irie: Chem. Rev. 98, 2045 (1998).

    Google Scholar 

  7. R.A. Rajewski and V.J. Stella: J. Pharm. Sci. 85, 1142 (1996).

    Google Scholar 

  8. T. Loftsson and T. Jarvinen: Adv. Drug Deliv. Rev. 36, 59 (1999).

    Google Scholar 

  9. H. Matsuda and H. Arima: Adv. Drug Deliv. Rev. 36, 81 (1999).

    Google Scholar 

  10. T. Loftsson and M. Màsson: Int. J. Pharm. 225, 15 (2001).

    Google Scholar 

  11. V.J. Stella, V.M. Rao, E.A. Zannou, and V. Zia: Adv. Drug Deliv. Rev. 36, 3 (1999).

    Google Scholar 

  12. U. Vollmer, B.W. Muller, J. Peeters, J. Mesens, B. Wilffert,and T. Peters: J. Pharm. Pharmacol. 46, 19 (1994).

    Google Scholar 

  13. M. Vitòria, L.B. Bentley, R.F. Vianna, S. Wilson, and J.H. Collett: J. Pharm. Pharmacol. 49, 397 (1997).

    Google Scholar 

  14. P. Saarinen-Savolainen, T. Jarvinen, K. Araki-Sasaki, H. Watanabe, and A. Urtti: Pharm. Res. 15, 1275 (1998).

    Google Scholar 

  15. J. Blanco, J.L. Vila-Jato, and F.A.S. Otero: Drug Dev. Ind. Pharm. 17, 943 (1991).

    Google Scholar 

  16. P. Mura, M.T. Faucci, P.L. Parrini, S. Furlanetto, and S. Pinzauti: Int. J. Pharm. 179, 117 (1999).

    Google Scholar 

  17. T. Higuchi and K.A. Connors: Adv. Anal. Chem. Instrum. 4, 117 (1965).

    Google Scholar 

  18. K.A. Connors: Binding Constants. The Measurement of Molecular Complex Stability, John Wiley, New York (1987).

    Google Scholar 

  19. Y. Inoue: Annual Reports on NMR Spectroscopy 27, 59 (1993).

    Google Scholar 

  20. E. Redenti, M. Pasini, P. Ventura, A. Spisni, M. Vikman, and J. Szejtli: J. Incl. Phenom. 15, 281 (1993).

    Google Scholar 

  21. M. Suzuki and Y. Sasaki: Chem. Pharm. Bull. 32, 832 (1984).

    Google Scholar 

  22. K.H. Kim, M.J. Frank, and N.L. Henderson: J. Pharm. Sci. 74, 283 (1985).

    Google Scholar 

  23. P. Mura, G.P. Bettinetti, A. Manderioli, M.T. Faucci, G. Bramanti, and M. Sorrenti: Int. J. Pharm. 166, 189 (1998).

    Google Scholar 

  24. Y. Nakai, K. Yamamoto, K. Terada, and K. Akimoto: Chem. Pharm. Bull. 32, 685 (1984).

    Google Scholar 

  25. H. Hatanaka, F. Komada, Y. Mishima, and K. Okumura: J. Pharm. Sci. 82, 1054 (1993).

    Google Scholar 

  26. D.D. Chow and A.H. Karara: Int. J. Pharm. 28, 95 (1986).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cappello, B., Di Maio, C. & Iervolino, M. Investigation on the Interaction of Bendazac with β-, Hydroxypropyl-β-, and γ-, yclodextrins. Journal of Inclusion Phenomena 43, 251–257 (2002). https://doi.org/10.1023/A:1021282110659

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021282110659

Navigation