Advertisement

Silicification and Biosilicification. Part 4. Effect of Template Size on the Formation of Silica

  • Siddharth V. Patwardhan
  • Stephen J. Clarson
Article

Abstract

Silicification at neutral pH and under ambient conditions is of growing interest due to its close relationship with biosilicification. In diatoms biosilicification has been reported to occur at (or close to) neutral pH and it has been shown that protein molecules act as catalysts/templates/scaffolds for this elegant materials chemistry. In this investigation various catalysts/templates have been studied for their role in silicification in vitro. We have used functionalized C60 fullerene, R5 (an important polypeptide from the amino acid sequence of a silaffin protein), poly-l-lysine (PLL) and two poly(allylamine hydrochloride) (PAH) samples having different molecular weights. An aqueous silica precursor was used and ordered silica structures were produced in each of the systems studied. The sizes of the silica structures appear to correlate with the size, in solution, of the templating/scaffolding agents. Biological systems exhibit hierarchical structures with remarkable control of morphologies over different length scales. The use of templating/scaffolding agents having different sizes and shapes is one possible paradigm for the production of such structures in vivo.

Silica sol-gel silicification biosilicification functionalized C60 fullerene silaffin R5 polypeptide poly-l-lysine PLL poly(allylamine hydrochloride) PAH 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    T. L. Simpson and B. E. Volcani, eds., Silicon and Siliceous Structures in Biological Systems (Springer-Verlag, New York, 1981).Google Scholar
  2. 2.
    N. Kroger, R. Deutzmann, and M. Sumper, Science 286, 1129 (1999).Google Scholar
  3. 3.
    K. Shimizu, J. N. Cha, G. D. Stucky, and D. E. Morse, PNAS 95, 6234 (1998). Silicification and Biosilicification 115 Google Scholar
  4. 4.
    C. C. Harrison (formerly Perry), Phytochemistry 41(1), 37 (1996).Google Scholar
  5. 5.
    S. V. Patwardhan, N. Mukherjee, and S. J. Clarson, J. Inorg. Organomet. Polym. 11(3), 193 (2001).Google Scholar
  6. 6.
    S. V. Patwardhan and S. J. Clarson, Silicon Chemistry (2002), in press.Google Scholar
  7. 7.
    S. V. Patwardhan, M. F. Durstock, and S. J. Clarson, in Synthesis and Properties of Silicones and Silicone-Modified Materials (ACS Symposium Series, 2002), in press.Google Scholar
  8. 8.
    J. N. Cha, G. D. Stucky, D. E. Morse, and T. J. Deming, Nature 403, 289 (2000).Google Scholar
  9. 9.
    S. V. Patwardhan and S. J. Clarson, Polym. Bull. 48, 387 (2002).Google Scholar
  10. 10.
    S. V. Patwardhan, N. Mukherjee, and S. J. Clarson, Silicon Chemistry 1(1), 47 (2002).Google Scholar
  11. 11.
    S. V. Patwardhan, M.S. thesis (Department of Materials Science and Engineering, University of Cincinnati, OH, USA, 2002).Google Scholar
  12. 12.
    N. Kroger, R. Deutzmann, C. Bergsdorf, and M. Sumper, PNAS 97(26), 14133 (2000).Google Scholar
  13. 13.
    S. V. Patwardhan, N. Mukherjee, and S. J. Clarson, J. Inorg. Organomet. Polym. 11(2), 117 (2001).Google Scholar
  14. 14.
    S. V. Patwardhan, N. Mukherjee, M. F. Durstock, L. Y. Chiang, and S. J. Clarson, J. Inorg. Organomet. Polym. 12(1/2), 49 (2002).Google Scholar
  15. 15.
    R. Tacke, Angew. Chem. Int. Ed., 38(20), 3015 (1999).Google Scholar
  16. 16.
    S. J. Clarson, P. W. Whitlock, S. V. Patwardhan, L. L. Brott, R. R. Naik, and M. O. Stone, Polymeric Materials: Science & Engineering 86, 81 (2002).Google Scholar
  17. 17.
    T. Coradin and J. Livage, Colloids and Surfaces B: Biointerfaces 21, 329 (2001).Google Scholar
  18. 18.
    S. V. Patwardhan and S. J. Clarson, manuscript in preparation.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringUniversity of CincinnatiCincinnati

Personalised recommendations