Journal of Superconductivity

, Volume 15, Issue 6, pp 531–534 | Cite as

Top-Seeded Melt-Growth of YBa2Cus3Ox Crystals for Neutron Diffraction Studies

  • D. C. Peets
  • R. Liang
  • C. Stock
  • W. J. L. Buyers
  • Z. Tun
  • L. Taillefer
  • R. J. Birgeneau
  • D. A. Bonn
  • W. N. Hardy

Abstract

We have grown cubic centimeter-size crystals of YBa2Cu3Ox suitable for neutron studies, by a top-seeded melt-growth technique. Growth conditions were optimized with an eye toward maximizing phase purity. It was found that the addition of 2% Y2BaCuO5 and 0.5% Pt (by mass) were required to prevent melt loss and to obtain the highest crystallinity. A neutron diffraction study on a mosaic of six such crystals found that the final Y2BaCuO5 concentration was 5%, while other impurity phases comprised less than 1% by volume. The oxygen content was set to x = 6.5, the crystals were detwinned, and then carefully annealed to give the well-ordered ortho-II phase. The neutron study determined that 70% of the mosaic's volume was in the majority orthorhomic domain. The neutron (006) and (110) rocking curve widths were ∼1° per crystal and ∼2.2° for the mosaic, and the oxygen chain correlation lengths were >100 Å in the a- and b-directions and ∼50 Å in the c-direction.

crystal growth top-seeded melt-growth ortho-II YBCO neutron scattering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Erb, E. Walker, and R. Flükiger, Physica C 245, 245(1995).Google Scholar
  2. 2.
    R. Liang, D. A. Bonn, and W. N. Hardy, Physica C 304, 105(1998).Google Scholar
  3. 3.
    T. Izumi, Y. Nakamura, and Y. Shiohara, J. Mater. Res. 7, 1621(1992).Google Scholar
  4. 4.
    S. Marinel, J. Wang, I. Monot, M. P. Delamare, J. Provost, and G. Desgardin, Supercond. Sci. Technol. 10, 147(1997).Google Scholar
  5. 5.
    D. Shi, K. Lahiri, D. Qu, and S. Sagar, J. Mater. Res. 12, 3036(1997).Google Scholar
  6. 6.
    M. Boffa, M. Boutet, A. D. Trolio, S. Pace, N. Sparvieri, A. M. Testa, and A. Vecchione, Physica C 282, 487(1997).Google Scholar
  7. 7.
    R. Yu, J. Mora, N. Vilalta, F. Sandiumenge, V. Gomis, S. Piñol, and X. Obradors, Supercond. Sci. Technol. 10, 583(1997).Google Scholar
  8. 8.
    Y. Imagawa and Y. Shiohara, Physica C 262, 243(1996).Google Scholar
  9. 9.
    M. Cima, M. C. Fleming, A. M. Figueredo, M. Nakade, H. Ishii, H. D. Brody, and J. S. Haggerty, J. Appl. Phys. 72, 179(1992).Google Scholar
  10. 10.
    C. A. Bateman, L. Zhang, H. M. Chan, and M. P. Harmer, J. Am. Ceram. Soc. 75, 1281(1992).Google Scholar
  11. 11.
    T. Izumi, Y. Nakamura, and Y. Shiohara, J. Cryst. Growth 128, 757(1993).Google Scholar
  12. 12.
    N. Ogawa, I. Hirabayashi, and S. Tanaka, Physica C 177, 101(1991).Google Scholar
  13. 13.
    R. Liang, D. A. Bonn, and W. N. Hardy, Physica C 236, 57(2000).Google Scholar
  14. 14.
    P. Manca, S. Sanna, G. Calestani, A. Migliori, S. Lapinskas, and E. E. Tornau, Phys. Rev. B 63, 134512(2001).Google Scholar
  15. 15.
    C. Stock, W. J. L. Buyers, Z. Tun, R. Liang, D. Peets, D. Bonn, W. N. Hardy, and L. Taillefer, Phys. Rev. B 66, 024505(2002)Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • D. C. Peets
    • 1
  • R. Liang
    • 1
    • 2
  • C. Stock
    • 3
  • W. J. L. Buyers
    • 2
    • 4
  • Z. Tun
    • 4
  • L. Taillefer
    • 2
    • 3
  • R. J. Birgeneau
    • 2
    • 3
  • D. A. Bonn
    • 1
    • 2
  • W. N. Hardy
    • 1
    • 2
  1. 1.Department of Physics and AstronomyUniversity of British ColumbiaVancouverCanada
  2. 2.Canadian Institute for Advanced ResearchCanada
  3. 3.Physics DepartmentUniversity of TorontoTorontoCanada
  4. 4.National Research CouncilChalk RiverCanada

Personalised recommendations