Plant Ecology

, Volume 164, Issue 1, pp 125–135 | Cite as

Effects of drought in biomass production and allocation in three varieties of Trichloris crinita P. (Poaceae) a forage grass from the arid Monte region of Argentina

  • S.A. Greco
  • J.B. CavagnaroEmail author


Trichloris crinita, a perennial forage grass nativeto the west arid Monte region of Argentina, has shown great variability inforage production among populations originated in different environments. In aprevious study under irrigated conditions we concluded that higher productivityof some varieties was associated with larger total plant biomass and higher drymatter partitioning to aboveground organs. The goal of the present study was toinvestigate the ecophysiological basis of differential productivity in threevarieties of T. crinita under water stress conditions.Varieties PICHI, ARROYITO and ENCON of high, medium and low productivity wereevaluated under high and low water availability. Two cycles of water stress,maintained until leaves folded, were applied to each variety. Leaf foldingoccurred at different leaf water potential (ΨL) for eachvariety.At the end of the first stress cycle ΨL were: PICHI −4.27MPa, ARROYITO −3.26 MPa and ENCON −1.82MPa. Each variety finished the stress cycle at a different time.Shoot/root ratio and DM partitioning to different organs were not modified bythe water stress treatment for the three varieties thus, the relativedifferences among them were maintained. Shoot/root ratio of PICHI (3.2) wasmorethan double of the least productive variety (ENCON). The higher productivity ofPICHI is associated to a larger shoot/root ratio, faster production of leafareaand higher leaf, sheath, culm and panicle DM production. Root DM was notdifferent among varieties. ENCON, coming from an area with lower rainfall andhigher temperature, was the last to fold their leaves and had a higher leafwater potential at the end of the drought cycle, probably linked to its smallerleaf area and relatively larger root system.

Biomass partitioning Forage grasses Shoot/root ratio Trichloris crinita Varieties Water stress 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bradford K.J. and Hsiao T.C. 1982. Physiological responses to moderate water stress. In: Lange OL, Nobel PS, Osmond CB and Ziegler H (eds), Physiological Plant Ecology II (Encyclopedia in Plant Physiology, NS, vol 12 B). Springer, New York, pp. 264-324.Google Scholar
  2. Brouwer R. and De Wit C.T. 1969. A simulation model of plant growth with special attention to root growth and its consequences. In: Whitington WJ (ed.), Root Growt. Proceedings of the 15th. Eastern School in Agricultural Science. Univ. of Nottingham, London.Google Scholar
  3. Brouwer R. 1983. Functional equilibrium: sense or nonsense? Netherland Journal of Agricultural Science 31: 335-48.Google Scholar
  4. Caloin M., Clement B. and Herrmann S. 1990. Regrowth kinetics of Dactylis glomeratafollowing defoliation. Annals of Botany 66: 397-405.Google Scholar
  5. Cavagnaro J.B. 1985. Effect of water stress on growth and dry matter partitioning in four species of Amaranthus. PhD Dissertation, University of California, Davis, USA.Google Scholar
  6. Cavagnaro J.B. 1988. Distribution of C3 and C4 grasses at different altitudes in a temperate arid region of Argentina. Oecologia 76: 273-277Google Scholar
  7. Cavagnaro J.B., Lemes J., Ventura J.L. and Passera C.B. 1989. Variabilidad ecotípica y producción forrajera de Trichloris crinita. 14 Congreso de Produccion Animal. Revista Asociacion Argentina de Produccion Animal (supl 1).Google Scholar
  8. Cavagnaro J.B. and Passera C.B. 1991. Water utilization by shrubs and grasses in the Monte ecosystem, Argentina. In: IV Congres International des Terres de Parcours., Montpellier, France, pp. 255-258.Google Scholar
  9. Echenique C.V. 1987. Algunas claves bioquímicas, físicas y anatómicas para el estudio de la resistencia a sequía en pasto llorón. Tesis. PhD Dissertation, U.N. del Sur, Argentina.Google Scholar
  10. Fioretti M.N. and Brevedan R.E. 1989. Caracterización fisiológica de ecotipos de Trichloris crinitaadaptados a ambientes con distinta disponibilidad de agua. I Relaciones hídricas. Resumenes XVII Reunión Argentina de Fisiologia Vegetal, Misiones, Argentina, p. 9.Google Scholar
  11. Gaborcik N. 1986. Genetic variability in young plants of tall fescue(Festuca arundinacea S.) in relation to water deficit. Rostlina Vyriba 32: 701-713.Google Scholar
  12. Greco S. 1996. Algunas causas ecofisiologicas de variaciones intraespecificas en productividad de Trichloris crinita(lag:P. (Pasto de hoja). Univ. Buenos, Aires, Argentina.Google Scholar
  13. Hamblin A., Tennant D. and Perry M.W. 1990. The cost of stress: dry matter partitioning changes with seasonal supply of water and nitrogen in dryland wheat. Plant & Soil 122: 47-58.Google Scholar
  14. Hsiao T.C. 1973. Plant responses to water stress. Annual Review of Plant Physiology 24: 519-570.Google Scholar
  15. Hsiao T.C. and Acevedo E. 1974. Plant responses to water deficits, water use efficiency, and drought resistance. Agricultural Meteorology 14: 59-84.Google Scholar
  16. King R.C. and Stanfield W.C. 1997. A dictionary of Genetics. Oxford Univ. Press., N.York.Google Scholar
  17. McNaughton S.J., Wallace L.L. and Coughenour M.B. 1983. Plant adaptation in an ecosystem context: effects of defoliation, nitrogen, and water on growth of an african C4 sedge. Ecology 64: 307-318.Google Scholar
  18. Moore K.J., Moser L.E., Vogel K.P., Waller S.S., Johnson B.E. and Pedersen J.F. 1991. Describing and cuantifying growth stages of perennial forage grasses. Agronomy Journal 83: 1073-1077.Google Scholar
  19. Nagarajah S. and Schulze E.D. 1983. Responses of Vigna unguiculata(L.)Walp. to atmospheric and soil drought. Australian Journal of Plant Physiology 10: 385-394.Google Scholar
  20. Norris I.B. and Thomas H. 1982. The effect of droughting on varietes and ecotypes of Lolium, Dactylisand Festuca. Journal of Applied Ecology 19: 881-889.Google Scholar
  21. Onillon B., Durand J.L., Gastal F. and Tournebize R. 1995. Drought effects on growth and carbon partitioning in a tall fescue sward grown at different rates of nitrogen fertilization. European Journal of Agronomy 4: 91-99.Google Scholar
  22. Rice K.J., Black R.A., Radamaker G. and Evans R.D. 1992. Photosynthesis, growth, and biomass allocation in habitat varieties of cheatgrass (Bromus tectorum). Functional Ecology 6: 32-40.Google Scholar
  23. Rodríguez Rey J.A., Domínguez H., Folquer de Martínez M.E. and Zeman E. 1977. Influencia de dos niveles hídricos sobre el crecimiento y desarrollo de Trichloris pluriflora. Revista de Agronomia del N.O. Argentino 14: 142-57.Google Scholar
  24. Rozema J., Rozema E. and Freusen A. 1978. Population differentation within Festuca rubrawith regard to soil salinity and soil water. Oecologia 34: 329-341.Google Scholar
  25. Roig F.A. 1972. Flora y vegetacion de la Reserva Forestal de Ñacuñan. Deserta I: 25-232.Google Scholar
  26. Ruiz Leal A. 1972. Flora popular mendocina. Deserta 3: 9-296.Google Scholar
  27. Sage R.F. and Pearcy R.W. 1987. The nitrogen use efficiency of C3 and C4 plants. I. Leaf nitrogen, growth, and biomass partitioning in Chenopodium albumand Amaranthus retroflexus(L). Plant Physiology 84: 954-958.Google Scholar
  28. Salaiz T.A., Shearman R.C., Riordan T.P. and Kinbacher E.J. 1991. Creeping Bentgrass cultivar water use and rooting responses. Crop Science 31: 1331-1334.Google Scholar
  29. Sanderson M., Stair D.W. and Hussey M.A. 1997. Physiological and morphological responses of perennial forages to stress. Advances in Agronomy 59: 171-223.Google Scholar
  30. Scholander P.F., Hammel H.T., Bradsteed E.D. and Hemmingsen E.A. 1965. Sap pressure in vascular plants. Science 148: 339-346.Google Scholar
  31. Schulze E-D. 1983. Root-shoot interactions and plant life forms. Netherland Journal of Agricultural Science 4: 291-303.Google Scholar
  32. Schulze E-D. 1986. Whole plant responses to drought. Australian Journal of Plant.Physiology 13: 127-141.Google Scholar
  33. Schulze E-D., Schilling K. and Nagrajah S. 1983. Carbohydrate partitioning in relation to whole plant production and water use of Vigna unguiculataL. Walp. Oecologia 58: 169-177.Google Scholar
  34. Seligman N., Cavagnaro J.B. and Horno M.E. 1992. Simulation of defoliation effects on primary production of a warm-season, semiarid perennial-species grassland. Ecological Modelling 60: 45-61.Google Scholar
  35. Simoes M. and Baruch Z. 1991. Responses to simulated herbivory and water stress in two tropical C4 grasses. Oecologia 88: 173-180.Google Scholar
  36. Thomas H. and Evans C. 1990. Influence of drought and flowering on growth and water relations of perennial ryegrass populations. Annals of Applied Biology 116: 371-382.Google Scholar
  37. Trione S.O. and Passera C.B. 1993. Growth and nitrogen status of Atriplex lampaseedlings under differents water regimes. Journal of Arid Environment 25: 331-341.Google Scholar
  38. Turner N.C. and Begg J. 1976. Responses of pasture plants to water deficits. In: Wilson JR. (ed.), Plant Relations in Pastures. CSIRO, East Melbourne, Australia, pp. 50-66.Google Scholar
  39. Turner N.C. 1979. Drought resistance and adaptation to water deficits in crop plants. In: Mussell and Staples (eds), Stress Physiology in Crop Plants. John Wiley & sons, New York.Google Scholar
  40. Turner N.C. 1986. Adaptation to water deficits: a changing perpective. Australian Journal of Plant Physiology 13: 175-190.Google Scholar
  41. Waistein P. and Gonzalez S. 1969. Valor nutritivo de forrajeras del este de la provincia de Mendoza. Reserva Ecológica de Ñacuñan.I Revista Facultad de Ciencias Agrarias, Argentina XV: 133-142.Google Scholar
  42. Wilson J.R. 1984. Tropical pastures. In: Pearson C.J. (ed.), Control of Crop Productivity. Academic Press, Sydney, Australia, pp. 185-196.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  1. 1.Ecofisiología VegetalIADIZA (Instituto Argentino de Investigación de Zonas Aridas), CRICYTMendozaARGENTINA
  2. 2.IADIZA, CRICYTMendozaArgentina

Personalised recommendations