Plant Ecology

, Volume 164, Issue 1, pp 19–27 | Cite as

Mantel and partial Mantel tests suggest some factors that may control the local distribution of Aster laurentianus at Îles de la Madeleine, Québec

  • Christina E. Reynolds
  • Gilles HouleEmail author


Spatial heterogeneity is a significant aspect of ecosystem structure andfunction. Because ecological variables often are spatially autocorrelated,standard statistics frequently are not appropriate to analyze ecological data.In this paper, we use Mantel and partial Mantel tests to explore the spatialstructure of and relationships between several variables –micro-topography, substrate salinity, wrack cover and the density ofAster laurentianus – at two sites at the peripheryofa shallow lagoon at Îles de la Madeleine, Québec.A. laurentianus is an annual halophyte endemic tothe Gulf of St. Lawrence. It typically occurs in a narrow band (from ca. 50 to200 cm wide) at the periphery of shallow lagoons. In this habitat,plants are exposed to frequent deposition of plant debris (wrack) and to thelimiting effects of substrate salinity.Our analyses show that substrate salinity, wrack cover and density ofA. laurentianus are significantly correlated withtopography, and that wrack cover affects substrate salinity at both sites. Atthe first site, the abundance of A. laurentianus increasesprogressively with distance from the waterline, while at the second site,density increases initially, but then diminishes with distance from thewaterline. At the first site, the most important structuring variable is wrackdeposition, the effect of salinity on plant density being indirect. At thesecond site, which is somewhat sheltered, wrack deposition is far lessimportantand substrate salinity predominates over wrack deposition as structuringvariable. We suggest that A. laurentianus distributionalong the shores of shallow lagoons is limited both by substrate salinity andwrack deposition, but that the relative importance of these structuringvariables changes with the physical characteristics of the site.

Aster laurentianus Îles de la Madeleine Mantel test Partial Mantel test Salt marsh Spatial pattern 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adam P. 1990. Saltmarsh Ecology. Cambridge University Press, New York, NY, USA.Google Scholar
  2. Adams D.A. 1963. Factors influencing vascular plant zonation in North Carolina salt marshes. Ecol. 44: 445-456.Google Scholar
  3. Bakker J.P., Dijkstra M. and Russchen P.T. 1985. Dispersal, germination and early establishment of halophytes and glycophytes on a grazed and abandoned salt-marsh gradient. New Phytol. 101: 291-308.Google Scholar
  4. Barbour M.G. and DeJong T.M. 1977. Response of West coast beach taxa to salt spray, seawater inundation, and soil salinity. Bull. Torrey Bot. Club 104: 29-34.Google Scholar
  5. Barbour M.G., Burk J.H. and Pitts W.D. 1980. Terrestrial Plant Ecology. Benjamin/Cummings, London, UK.Google Scholar
  6. Bertness M.D. and Ellison A.M. 1987. Determinants of pattern in a New England salt marsh community. Ecol. Monog. 57: 129-147.Google Scholar
  7. Bertness M.D., Gough L. and Shumway S.W. 1992. Salt tolerances and the distribution of fugitive salt marsh plants. Ecol. 73: 1842-1851.Google Scholar
  8. Brewer J.S., Levine J.M. and Bertness M.D. 1998. Interactive effects of elevation and burial with wrack on plant community structure in some Rhode Island salt marshes. J. Ecol. 86: 125-136.Google Scholar
  9. Chapman V.J. 1974. Salt Marshes and Salt Deserts of the World. J. Cramer, Lehre, Germany.Google Scholar
  10. Cliff A.D. and Ord J.K. 1981. Spatial Processes: Models and Applications.Pion Limited, London, UK.Google Scholar
  11. Earle J.C. and Kershaw K.A. 1989. Vegetation patterns in James Bay coastal marshes, III. Salinity and elevation as factors in fluencing plant zonation. Can. J. Bot. 67: 2967-2974.Google Scholar
  12. Egan T.P. and Ungar I.A. 1999. The effects of temperature and seasonal change on the germination of two salt marsh species, Atriplex prostrataand Salicornia europaea, along a salinity gradient. Int. J. Plant Sci. 160: 861-867.Google Scholar
  13. Hopkins D.R. and Parker V.T. 1984. A study of a seed bank of a salt marsh in northern San Francisco Bay. Am. J. Bot. 71: 348-355.Google Scholar
  14. Houle F. 1988. Status report on Gulf of St. Lawrence Aster, Aster laurentianusFernald, a rare species in Canada. Gouvernement du Canada, Musée national des sciences naturelles, Ottawa, Ontario, Canada.Google Scholar
  15. Houle F. and Haber E. 1990. Status of the Gulf of St. Lawrence Aster, Aster laurentianus(Asteraceae). Can. Field Nat. 104: 455-459.Google Scholar
  16. Houle G., Morel L., Reynolds C.E. and Siégel J. 2001. The effect of salinity on different developmental stages of an endemic annual plant-Aster laurentianusFernald (Asteraceae). Am. J. Bot. 88: 62-67.Google Scholar
  17. Labrecque J. and Gagnon J. 1995. La situation de l’aster du Saint-Laurent, Symphyotrichum laurentianum(synonyme: Aster laurentianus) au Canada. Gouvemement du Québec, ministère de l’environnement et de la Faune, Direction de la conservation et du patrimoine écologique, Québec, Canada.Google Scholar
  18. Legendre P. and Fortin M.-J. 1989. Spatial patterns and ecological analysis. Vegetatio 80: 107-138.Google Scholar
  19. Legendre P. and Troussellier M. 1988. Aquatic heterotrophic bacteria: Modeling in the presence of spatial autocorrelation. Limnol.Ocean. 33: 1055-1067.Google Scholar
  20. Legendre P. and Vaudor A. 1991. Le Progiciel R: Analyse Multidimensionnelle, Analyse Spatiale. Version MacIntosh. Université de Montréal, Montréal, Québec.Google Scholar
  21. Levin L.A. 1984. Life history and dispersal patterns in a dense infaunal polychaete assemblage: community structure and response to disturbance. Ecol. 65: 1185-1200.Google Scholar
  22. Mantel N. 1967. The detection of disease clustering and a generalized regression approach. Cancer Res. 27: 209-220.Google Scholar
  23. May R.M. 1974. Stability and Complexity in Model Ecosystems. 2nd edn. Princeton University Press, Princeton, NJ, USA.Google Scholar
  24. Mulder P.H., Ruess R.W. and Sedinger J.S. 1996. Effects of environmental manipulations on Triglochin palustris: Inplications for the role of goose herbivory in controlling its distribution. J. Ecol. 84: 267-278.Google Scholar
  25. Pennings S.C. and Callaway R.M. 1992. Salt marsh plant zonation: the relative importance of competition and physical factors. Ecol. 73: 681-690.Google Scholar
  26. Pennings S.C. and Richards C.L. 1998. Effects of wrack burial in salt-stressed habitats: Batis maritimain a southwest Atlantic salt marsh. Ecog. 21: 630-638.Google Scholar
  27. Ranwell D.S. 1972. Ecology of Salt Marshes and Sand Dunes. Chapman and Hall, London, UK.Google Scholar
  28. Reynolds C.E., Houle G. and Marquis C. 2001. Light and salinity affect growth of the salt marsh plant Aster laurentianus. New Phytol. 149: 441-448.Google Scholar
  29. Sánchez J.M., Izco J. and Medrano M. 1996. Relationships between vegetation zonation and altitude in a salt-marsh system in northwest Spain. J. Veg. Sci. 7: 695-702.Google Scholar
  30. Smouse P.E., Long J.C. and Sokal R.R. 1986. Multiple regression and correlation extensions of the Mantel test of matrix correspondence. System. Zool. 35: 627-632.Google Scholar
  31. Snow A.A. and Vince S.W. 1984. Plant zonation in an Alaskan salt marsh II. An experimental study of the role of edaphic conditions. J. Ecol. 72: 699-684.Google Scholar
  32. Ungar I.A. 1974. Halophyte communities of Park County, Colorado. Bull. Torrey Bot. Club 101: 145-152.Google Scholar
  33. Ungar I.A. 1987. Population characteristics, growth, and survival of the halophyte Salicornia europaea.col. 48: 569-575.Google Scholar
  34. Ungar I.A. 1991. Ecophysiology of Vascular Halophytes. CRC Press, Boca Raton, FL, USA.Google Scholar
  35. Ungar I.A. and Woodell R.J. 1993. The relationship between the seed bank and species composition of plant communities in two British salt marshes. J. Veg. Sci. 4: 531-536.Google Scholar
  36. Valiela I. and Rietsma C.S. 1995. Disturbance of salt marsh vegetation by wrack mats in Great Sippewissett Marsh. Oecol. 102: 106-112.Google Scholar
  37. Vince S.W. and Snow A.A. 1984. Plant zonation in an Alaskan salt marsh I. Distribution, abundance and environmental factors. J. Ecol. 72: 651-667.Google Scholar
  38. Waisel Y. 1972. Biology of Halophytes. Academic Press, New York, NY, USA.Google Scholar
  39. Whittaker R.H. 1967. Gradient analysis of vegetation. Biol. Rev. 47: 207-264.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  1. 1.Département de biologie and Centre d'études nordiquesUniversité LavalSainte-FoyCanada

Personalised recommendations