Journal of the History of Biology

, Volume 35, Issue 3, pp 537–567 | Cite as

A Recapitulation of the Rise and Fall of the Cell Lineage Research Program: The Evolutionary-Developmental Relationship of Cleavage to Homology, Body Plans and Life History

  • Robert Guralnick
Article

Abstract

American biologists in the late nineteenthcentury pioneered the descriptive-comparativestudy of all cell divisions from zygote togastrulation – the cell lineage. Data fromcell lineages were crucial to evolutionary anddevelopmental questions of the day. One of themain questions was the ultimate causation ofdevelopmental patterns – historical ormechanical. E. B. Wilson's groundbreakinglineage work on the polychaete worm Nereis in 1892 set the stage for (1) an attackon Haeckel's phylogenetic-historical notion ofrecapitulation and (2) support for mechanisticexplanations of cleavage patterns. As morelineage work – especially Lillie's work on Unio and Conklin's on Crepidula – becameavailable in the mid-late 1890s, mechanism wastempered with more evolutionary, homology-basedviews. However, as I show by focusing on threemajor issues – homology, body plans and lifehistory – these views were primarily based onthe precocious segregation and prospectivesignificance – what the cell became not what itwas. Even on issues like adaptation, mostlineagists argued teleologically from the adultbackward. Most cell lineage workers, by 1900,were to varying degreesmechanist/experimentalist and recapitulationistsimultaneously. The exception was E. G.Conklin, whose views were more akin to aDarwinian evolutionist than either mechanist orrecapitulationist. Lineage work eventuallydeclined and by 1907 published accounts of newlineages had basically stopped. I argue thatestablished workers and younger researchersstopped wanting to take on cell lineageprojects because the general patterns were thesame for all the spiralians while the specificsshowed too much variation. It was hard totheoretically encompass or analyze the minutiaeof variation in a recapitulationist ormechanist framework. The only establishedworker who continued to do comparative lineagestudies was E. G. Conklin, perhaps because thevariation could best be accommodated byDarwinian evolution.

adaptation in cleavage biogenetic law cell lineage cleavage E. G. Conklin evo-devo ontogeny phylogeny precocious segregation recapitulation E. B. Wilson 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blochmann, F. 1881. “Über die Entwicklung der Neritina fluviatilus.” Zeitschrift für wissenschaftliche Zoologie 36: 125–174.Google Scholar
  2. Boyer, B. C. and J. Q. Henry. 1998. “Evolutionary Modifications of the Spiralian Developmental Program.” American Zoologist 38(4): 621–633.Google Scholar
  3. Casteel, D. B. 1904. “The Cell-Lineage and Early Development of Fiona marina, a Nudibranch Mollusk.” Proceedings of the Academy of Natural Sciences (Philadelphia) 56: 325–401.Google Scholar
  4. Child, C. M. 1899. “The Significance of the Spiral Type of Cleavage and Its Relation to the Process of Differentiation.” In Biological Lectures Delivered at the Marine Biological Laboratory of Wood's Hole, pp. 231–266. Boston: Ginn & Co.Google Scholar
  5. Conklin, E. G. 1897. “The Embryology of Crepidula, a Contribution to the Cell Lineage and Early Development of Some Marine Gastropods.” Journal of Morphology 13: 1–266.Google Scholar
  6. Conklin, E. G. 1905. “Organization and Cell-lineage of the Ascidian Egg.” Proceedings of the Academy of Natural Sciences (Philadelphia) 13: 1–119.Google Scholar
  7. Delsman, H. C. 1914. “Entwicklungsgeschichte von Littornia obtusata.” Tijdschrift der Nederlandsche Dierkundige Vereeniging 14: 383–498.Google Scholar
  8. ―1915. “Eifürchung und Gastrulation bei Emplectonema gracile.” Tijdschrift der Nederlandsche Dierkundige Vereeniging 14: 68–109.Google Scholar
  9. ―1916. “Eifurchung und Keimblätterbildung bei Scoloplos armiger.” Tijdschrift der Nederlandsche Dierkundige Vereeniging 14: 383–498.Google Scholar
  10. Freeman, G. and J. W. Lundelius. 1992. “Evolutionary Implications of the Mode of D Quadrant Specification in Coelomates with Spiral Cleavage.” Journal of Evolutionary Biology 5(2): 205–247.Google Scholar
  11. Gerould, J. H. 1906. “The development of Phascolosoma (Studies on the Embryology of the Sipunculidae II).” Zoologische Jahrbücher. Abteilung für Anatomie und Ontogenie der Tiere 23: 77–162.Google Scholar
  12. Gilbert, S. F. 1978. “The Embryological Origins of the Gene Theory.” Journal of the History of Biology 11(2): 307–352.Google Scholar
  13. Guralnick, R. P. and D. R. Lindberg. 2001. “Reconnecting Cell and Animal Lineages: What Do Cell Lineages Tell Us About Evolution and Development of Spiralia?” Evolution 55: 1501–1519.Google Scholar
  14. Gustafson, R. G. and R. A. Lutz. 1992. “Larval and Early Post-Larval Development of the Protobranch Bivalve Solemya velum (Mollusca: Bivalvia).” Journal of the Marine Biological Association of the United Kingdom 72(2): 383–402.Google Scholar
  15. Hammarsten, O. 1918. “Embryonalentwicklung der Malacobdella grossa.” Stockholm Zoologiska Institutionen Arb 1: 1–89.Google Scholar
  16. Heath, H. 1899. “The Development of Ischnochiton.” Zoologische Jahrbücher. Abteilung für Anatomie und Ontogenie der Tiere 12: 567–656.Google Scholar
  17. Ivanov, A. V. 1988. “Analysis of the Embryonic Development of Pogonophora in Connection with the Problems of Phylogenetics.” Zeitschrift für zoologische Systematik und Evolutionsforschung 26(3): 161–185.Google Scholar
  18. Kumé, M. and K. Dan. 1957. Invertebrate Embryology. Bai Fu Kan Press.Google Scholar
  19. Lankester, E. R. 1877. “Notes on the Embryology and Classification of the Animal Kingdom.” Quarterly Journal of the Microscopical Science 17: 399–454.Google Scholar
  20. Lillie, F. R. 1895. “The Embryology of the Unionidae.” Journal of Morphology 10: 1–100.Google Scholar
  21. ―1898. “Adaptation in Cleavage.” In Biological Lectures Delivered at the MarineBiological Laboratory of Wood's Hole, pp. 43–56. Boston: Ginn & Co.Google Scholar
  22. Maienschein, J. 1978. “Cell Lineage, Ancestral Remembrance, and the Biogenetic Law.” Journal of the History of Biology 11(1): 129–158.Google Scholar
  23. Marcus, E. 1939. “Bryozoarios Marinhos Brasileiros III.” Faculdade de Filosofia, Ciencias e Letras Universidade de Sao Paulo Zoologia 3: 11–253.Google Scholar
  24. Mead, A. D. 1897. “The Early Development of Marine Annelids.” Journal of Morphology 13: 227–326.Google Scholar
  25. ―1899. “The Origin of the Prototroch.” In Biological Lectures Delivered at the Marine Biological Laboratory of Wood's Hole, pp. 113–138. Boston: Ginn & Co.Google Scholar
  26. Meisenheimer, J. 1900. “Entwicklungsgeschichte von Dreissena polymorpha.” Zeitschrift für wissenschaftliche Zoologie 69: 1–137.Google Scholar
  27. Nelson, J. A. 1904. “The Early Development of Dinophilus: A Study in Cell Lineage.” Proceedings of the Academy of Natural Sciences (Philadelphia) 56: 687–737.Google Scholar
  28. Newby, W. W. 1940. “The Embryology of the Echiuroid Worm Urechis caupo.” Memoirs of the American Philosophical Society 16: 1–213.Google Scholar
  29. Nyhart, L. K. 1995. Biology Takes Form. The University of Chicago Press.Google Scholar
  30. Robert, A. 1902. “Recherches sur le Développement des Troches.” Archives de zoologie experimentale et generale 30: 269–538.Google Scholar
  31. Schmidt, G. A. 1925. “Untersuchungen über die Embryologie der Anneliden I. Die Embryonalentwicklung von Piscicola geometra Blainv.” Zoologische Jahrbücher. Abteilung für Anatomie und Ontogenie der Tiere 47: 319–428.Google Scholar
  32. ―1944. “Adaptive Significance of the Pecularities of the Cleavage Process in Leeches.” Zhurnal obshchei biologii 5: 284–303.Google Scholar
  33. Smallwood, W. M. 1904. “The Maturation, Fertilization and Early Cleavage of Haminea solitaria (Say).” Bulletin of the Museum of Comparative Zoology 45(4): 1–60.Google Scholar
  34. Surface, F. M. 1907. “The Early Development of a Polyclad Planocera inquilina.” Proceedings of the Academy of Natural Sciences (Philadelphia) 59: 514–559.Google Scholar
  35. Tannreuther, G. 1915. “The Embryology of Bdellodrilus philadelphicus.” Journal of Morphology 26: 143–216.Google Scholar
  36. Torrey, J. C. 1904. “Early Development of Thalessema mellita.” New York Academy of Sciences 14: 165–246.Google Scholar
  37. Treadwell, A. L. 1900. “Equal and Unequal Cleavage.” In Biological Lectures Delivered at the Marine Biological Laboratory of Wood's Hole, pp. 93–112. Boston: Ginn & Co.Google Scholar
  38. ―1901. “The Cytogeny of Podarke obscura.” Journal of Morphology 17: 399–486.Google Scholar
  39. Valentine, J. W., D. Jablonski and D. Erwin. 1999. “Fossils, Molecules and Embryos: New Perspectives on the Cambrian Explosion.” Development 126(5): 851–859.Google Scholar
  40. Van den Biggelaar, J. A. M. and G. Haszprunar. 1996. “Cleavage Patterns and Mesentoblast Formation in the Gastropoda: An Evolutionary Perspective.” Evolution 50(4): 1520–1540.Google Scholar
  41. Wilson, E. B. 1892. “The Cell Lineage of Nereis. A Contribution to the Cytogeny of the Annelid Body.” Journal of Morphology 6: 361–480.Google Scholar
  42. ―1894. “The Embryological Criterion of Homology.” In Biological Lectures Delivered at the Marine Biological Laboratory of Wood's Hole, pp. 101–124. Boston: Ginn & Co.Google Scholar
  43. ―1898. “Cell-Lineage and Ancestral Reminiscence.” In Biological Lectures Delivered at the Marine Biological Laboratory of Wood's Hole, pp. 21–42. Boston: Ginn & Co.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Robert Guralnick
    • 1
  1. 1.CU Museum and EPO BiologyUniversity of Colorado at BoulderBoulderUSA

Personalised recommendations