Advertisement

Ukrainian Mathematical Journal

, Volume 54, Issue 4, pp 592–602 | Cite as

Varieties of Groups with Invariant Centralizers of Subgroups

  • T. I. Mel'nyk
Article
  • 20 Downloads

Abstract

We present a structural description of free groups and some critical subgroups of a given variety.

Keywords

Free Group Structural Description Invariant Centralizer Critical Subgroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    O. N. Golovin and N. P. Gol'dina, “Subgroups of free metabelian groups,” Mat. Sb., 37, 323–336 (1955).Google Scholar
  2. 2.
    N. F. Sesekin, “On classification of torsion-free metabelian groups with finitely many generators,” Uchen. Zap. Ural. Univ., 19, 27–51 (1956).Google Scholar
  3. 3.
    P. Conrad, “Skew tensor products and groups of class two,” Nagoya Math. J., 23, 15–51 (1963).Google Scholar
  4. 4.
    V. N. Remeslennikov, “Two remarks on nilpotent groups of class 3,” Algebra Logika (Seminar), 4, No. 2, 59–65 (1965).Google Scholar
  5. 5.
    F. Haimo, “Power type endomorphisms of some class 2 groups,” Pacif. J. Math., 5, 201–213 (1955).Google Scholar
  6. 6.
    B. Jonsson, “Varieties of groups of nilpotence three,” Notic. Amer. Math. Soc., 13, No. 4, 488 (1966).Google Scholar
  7. 7.
    F. Levi, “Groups in which the commutator operation satisfies certain algebraic conditions,” J. Indian Math. Soc., 6, 87–97 (1942).Google Scholar
  8. 8.
    A. I. Shirshov, “On some groups close to Engel groups,” in: Rings and Algebras [in Russian], Nauka, Moscow (1984), pp. 106–114.Google Scholar
  9. 9.
    H. Neumann, Varieties of Groups [Russian translation], Mir, Moscow (1969).Google Scholar
  10. 10.
    G. Higman, “Some remarks on varieties of groups,” Quart. J. Math., 165–178 (1959).Google Scholar
  11. 11.
    D. J. S. Robinson, Finiteness Conditions and Generalized Soluble Groups, Vol. 2, Springer, Berlin (1972).Google Scholar
  12. 12.
    A. G. Kurosh, Group Theory [in Russian], Nauka, Moscow (1967).Google Scholar
  13. 13.
    M. Hall, Jr., The Theory of Groups [Russian translation], Inostrannaya Literatura, Moscow (1962).Google Scholar
  14. 14.
    Cher Ving, “On finite p-groups with cyclic commutator subgroups,” Arch. Math., 39, No. 4, 295–298 (1982).Google Scholar
  15. 15.
    M. I. Kargapolov and Yu. I. Merzlyakov, Fundamentals of Group Theory [in Russian], Nauka, Moscow (1982).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • T. I. Mel'nyk
    • 1
  1. 1.Kherson Pedagogical UniversityKherson

Personalised recommendations